1 简介
高分辨率的多光谱图像应用广泛,比如变化监测,目标识别,场景解译.通常,商用光学卫星能够同时提供高空间分辨率的全色图像和低分辨率的多光谱图像.物理条件的限制使得单一传感器无法获得高质量的多光谱图像.于是,利用全色图像的细节来提高多光谱图像的空间分辨率这一思路受到了广大学者的关注.全色和多光谱图像融合的目标在于同时提高空间分辨率和减小光谱失真.实际上,由于全色图像的加入,融合图像的空间分辨率可以得到显著提高,但是,光谱畸变也会随之产生. 稀疏表示理论,作为一种新的信号表示方法,已经应用在许多图像处理领域.采用过完备字典的稀疏表示能够使分解系数更稀疏,更能反映信号的本质特征和内在结构.针对全色和多光谱图像融合这一难题,本文提出了基于稀疏表示的融合方法.
2 部分代码
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
close all;clear all;
setup;
Verbose='on';
generate=1;subMeth='PCA';FusMeth='Sparse';
scale=1;SNR_R=inf;seed=1;
%% G