【图像融合】基于稀疏表示多光谱图像融合含Matlab源码

该博客介绍了基于稀疏表示理论的多光谱图像融合方法,旨在提高图像的空间分辨率并减少光谱失真。通过使用Matlab源码展示了部分实现过程,并分享了仿真结果。博主擅长多种领域的Matlab仿真,包括图像处理和智能优化算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 简介

高分辨率的多光谱图像应用广泛,比如变化监测,目标识别,场景解译.通常,商用光学卫星能够同时提供高空间分辨率的全色图像和低分辨率的多光谱图像.物理条件的限制使得单一传感器无法获得高质量的多光谱图像.于是,利用全色图像的细节来提高多光谱图像的空间分辨率这一思路受到了广大学者的关注.全色和多光谱图像融合的目标在于同时提高空间分辨率和减小光谱失真.实际上,由于全色图像的加入,融合图像的空间分辨率可以得到显著提高,但是,光谱畸变也会随之产生. 稀疏表示理论,作为一种新的信号表示方法,已经应用在许多图像处理领域.采用过完备字典的稀疏表示能够使分解系数更稀疏,更能反映信号的本质特征和内在结构.针对全色和多光谱图像融合这一难题,本文提出了基于稀疏表示的融合方法.

2 部分代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%close all;clear all;setup;Verbose='on';generate=1;subMeth='PCA';FusMeth='Sparse';scale=1;SNR_R=inf;seed=1;%% G
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值