✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
煤矿瓦斯灾害是煤矿生产安全事故的主要类型之一,其发生具有突发性、危害性大等特点,对矿工生命安全和矿山生产造成严重威胁。瓦斯浓度预测是预防瓦斯灾害的关键环节,旨在准确预测未来瓦斯浓度变化趋势,为矿井通风、安全生产提供有效预警。传统预测方法往往受限于模型复杂度、数据依赖性等问题,难以有效应对瓦斯浓度非线性、动态变化的特点。近年来,宽度学习神经网络(Broad Learning System, BLS)因其结构简单、训练速度快、泛化能力强等优势,在瓦斯浓度预测方面展现出巨大潜力。
1. 宽度学习神经网络BLS概述
宽度学习神经网络BLS是一种新兴的神经网络模型,它突破了传统神经网络逐层训练的模式,采用并行学习机制,将大量特征节点直接映射到输出层,从而实现快速高效的训练。BLS主要由三部分组成:输入层、增强层和输出层。输入层负责接收数据,增强层通过线性映射和非线性激活函数对输入数据进行特征提取和增强,输出层则根据增强层节点的输出计算最终的预测结果。BLS的显著优点在于:
-
快速训练: BLS采用增量学习机制,无需反向传播,可以快速训练大量数据。
-
结构简单: BLS结构简单,易于理解和实现,不需要复杂的调参过程。
-
泛化能力强: BLS能够有效地处理高维、非线性数据,具有良好的泛化能力。
2. 向量加权平均算法INFO
INFO算法是一种基于向量加权平均的特征选择算法,能够有效地识别数据中最重要的特征,并将其作为输入特征用于模型训练。INFO算法的基本原理是根据特征之间的相关性进行加权平均,将相关性高的特征赋予更高的权重,从而增强模型对重要特征的敏感度。INFO算法的优势在于:
-
高效性: INFO算法计算简单,效率高,能够快速识别重要特征。
-
有效性: INFO算法能够有效地筛选出对模型预测结果影响最大的特征,提高模型预测精度。
-
可解释性: INFO算法能够根据特征权重解释模型预测结果,提高模型的可解释性。
3. INFO优化宽度学习神经网络BLS预测瓦斯浓度
本文提出了一种基于向量加权平均算法INFO优化宽度学习神经网络BLS的瓦斯浓度回归预测方法。该方法首先利用INFO算法对历史瓦斯浓度数据进行特征选择,识别出对瓦斯浓度变化影响最大的特征。然后,将选出的重要特征作为输入数据,训练宽度学习神经网络BLS模型。最后,利用训练好的BLS模型对未来的瓦斯浓度进行预测。
3.1 INFO特征选择
在进行瓦斯浓度预测之前,需要对历史瓦斯浓度数据进行特征选择,识别出对瓦斯浓度变化影响最大的特征。本文采用向量加权平均算法INFO进行特征选择。INFO算法的核心思想是根据特征之间的相关性进行加权平均,将相关性高的特征赋予更高的权重,从而增强模型对重要特征的敏感度。INFO算法的具体步骤如下:
-
计算特征相关性矩阵: 计算所有特征之间的相关系数,得到特征相关性矩阵。
-
构建权重向量: 根据特征相关性矩阵,构建权重向量,将相关性高的特征赋予更高的权重。
-
加权平均: 对所有特征进行加权平均,得到最终的特征选择结果。
3.2 BLS模型训练
在进行特征选择后,将选出的重要特征作为输入数据,训练宽度学习神经网络BLS模型。BLS模型的训练过程可以概括为以下步骤:
-
构建增强层: 随机生成大量特征节点,并将其连接到输入层。
-
计算输出层: 根据增强层节点的输出,计算输出层节点的输出。
-
更新权重: 通过最小化损失函数,更新连接输入层和增强层、增强层和输出层的权重。
3.3 瓦斯浓度预测
训练好BLS模型后,就可以利用该模型对未来的瓦斯浓度进行预测。预测过程只需将新的输入数据输入到训练好的BLS模型中,即可得到预测结果。
4. 实验结果
实验结果表明,本文提出的基于INFO优化BLS的瓦斯浓度预测方法能够有效提高预测精度。与传统的预测方法相比,本文方法具有更高的预测精度和更快的训练速度。
5. 结论
本文提出了一种基于向量加权平均算法INFO优化宽度学习神经网络BLS的瓦斯浓度回归预测方法。该方法利用INFO算法筛选出对瓦斯浓度影响最大的特征,并将其作为输入数据训练BLS模型,最终实现对瓦斯浓度的准确预测。实验结果表明,该方法能够有效提高瓦斯浓度预测精度,具有实际应用价值。
展望
未来将继续研究如何进一步提高瓦斯浓度预测精度,探索新的特征选择方法和神经网络模型,并结合更丰富的历史数据,构建更加完善的瓦斯浓度预测系统,为矿井安全生产提供更加可靠的技术支持。
⛳️ 运行结果
📣 部分代码
%% 种群初始化
function [X]=initialization(N,dim,up,down)
if size(up,1)==1
X=rand(N,dim).*(up-down)+down;
end
if size(up,1)>1
for i=1:dim
high=up(i);low=down(i);
X(:,i)=rand(1,N).*(high-low)+low;
end
end
end
🔗 参考文献
[1] 王雨虹,王淑月,王志中,等.基于改进蝗虫算法优化长短时记忆神经网络的多参数瓦斯浓度预测模型研究[J].传感技术学报, 2021, 034(009):1196-1203.DOI:10.3969/j.issn.1004-1699.2021.09.009.
[2] 智登奎,李国勇.基于遗传算法优化神经网络瓦斯浓度预测[J].矿山机械, 2013, 41(4):4.DOI:CNKI:SUN:KSJX.0.2013-04-036.
[3] 刘奕君,赵强,郝文利.基于遗传算法优化BP神经网络的瓦斯浓度预测研究[J].矿业安全与环保, 2015, 42(2):5.DOI:10.3969/j.issn.1008-4495.2015.02.014.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类