✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在高比例可再生能源接入的电力系统中,灵活性资源的供需平衡是维持系统稳定运行的核心。灵活性需求(如负荷波动、新能源出力波动)与供给(如常规机组调节能力、储能充放电响应)的不确定性日益突出,可能导致弃风弃光、电压越限等问题。储能系统作为快速响应的灵活性资源,其优化配置需同时考虑供需两侧的不确定性,通过量化波动风险、动态匹配资源与需求,在满足系统安全约束的前提下,实现投资成本与运行效益的最优平衡。
一、灵活性供需不确定性的来源与影响
灵活性供需不确定性是指电力系统中灵活性需求与可提供的灵活性资源在时间、幅值上的随机波动,其本质是系统源荷两侧动态变化的不确定性传递。
(一)不确定性来源分析
- 灵活性需求侧不确定性:
- 负荷波动:居民、商业负荷的随机性(如极端天气导致的空调负荷骤增),短期预测误差可达 5%-10%;
- 新能源出力波动:风电、光伏的间歇性,15 分钟内出力波动幅度可超过额定容量的 20%(如云层遮挡导致光伏出力骤降);
- 负荷曲线形态变化:工作日与周末的负荷峰谷差差异(可达 20%),增加灵活性需求的时序不确定性。
- 灵活性供给侧不确定性:
- 常规机组调节能力:火电机组的最小技术出力、爬坡速率受煤质、设备状态影响,实际调节范围可能偏离设计值 ±10%;
- 储能系统性能:充放电效率受温度、充放电深度影响(如锂电池在 - 10℃时效率降至 80%),寿命衰减速度存在随机差异;
- 外购灵活性资源:跨区输电的可用容量受外网故障、检修影响,存在 10%-15% 的随机波动。
(二)对储能配置的影响
- 配置不足的风险:
若低估灵活性需求或高估供给能力,储能容量 / 功率不足将导致系统灵活性缺口,引发:
- 新能源弃电率升高(如风电弃电率从 5% 升至 15%);
- 频率偏差超标(超过 ±0.2Hz 的概率增加 30%);
- 紧急切负荷事件(每千次灵活性缺口可能导致 1-2 次切负荷)。
- 过度配置的成本浪费:
若高估需求或低估供给,储能投资将产生冗余:
- 单位容量投资成本增加 20%-30%(如锂电储能单位成本约 1500 元 /kWh);
- 储能利用率降低(年充放电次数从 300 次降至 150 次);
- 运维成本上升(闲置设备的维护费用占总投资的 5%-8%)。
例如,某区域电网在夏季负荷高峰时段,因未考虑光伏出力骤降(2 小时内下降 400MW)与空调负荷骤增(1 小时内上升 300MW)的叠加不确定性,储能配置不足导致频率稳定时间延长至 15 秒(远超 5 秒标准)。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌟 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇