✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在工业生产、环境监测、经济分析等领域,“多输入多输出”(MIMO)的回归预测需求日益普遍 —— 比如根据某工厂的原材料配比、反应温度、搅拌速度、反应时间等多个输入变量,同时预测产品的纯度、硬度、韧性等多个质量指标;或是依据某地区的降水量、气温、土壤湿度、日照时长等变量,同步预测该地区小麦、玉米、水稻的亩产量。这类场景的核心挑战在于:如何精准捕捉多个输入与多个输出间的复杂非线性关联,同时避免模型因参数设置不当导致的 “欠拟合” 或 “过拟合”,最终输出稳定可靠的多维度预测结果。
而GA-LSSVM 模型(遗传算法优化的最小二乘向量机),正是应对这类多输入多输出回归问题的 “硬核工具”。它将最小二乘向量机(LSSVM)强大的非线性拟合能力,与遗传算法(GA)高效的全局参数寻优能力相结合,既解决了传统 LSSVM 在多输出场景下 “参数敏感、调优困难” 的痛点,又通过智能优化提升了模型对多变量复杂关系的捕捉精度,在多指标同步预测场景中展现出极高的实用价值。
一、基础拆解:GA 与 LSSVM 的 “核心本领”
要理解 GA-LSSVM 的融合逻辑,首先需明确遗传算法(GA)和最小二乘向量机(LSSVM)各自的 “基本功”—— 只有掌握单个组件的优势,才能更好地理解 “1+1>2” 的融合效果。
1. 最小二乘向量机(LSSVM):多变量非线性拟合的 “一把好手”
传统支持向量机(SVM)在处理回归问题时,通过寻找最优超平面最小化预测误差,但求解过程涉及复杂的不等式约束,尤其在多输出场景下计算成本极高。而 LSSVM(Least Squares Support Vector Machine)作为 SVM 的改进版本,通过将 “不等式约束” 转化为 “等式约束”,将求解问题简化为线性方程组求解,大幅提升了计算效率,成为处理多变量非线性回归的理想选择。
(1)LSSVM 的核心原理:核函数映射 + 最小二乘优化
LSSVM 处理多输入多输出回归的核心逻辑,可概括为 “低维输入→高维映射→线性拟合” 三步:
- 输入变量映射:通过核函数(如 RBF 核、多项式核),将多输入变量(如原材料配比、反应温度)从低维空间映射到高维特征空间。在高维空间中,原本复杂的非线性关系可转化为线性关系,便于模型拟合;
- 构建回归模型:在高维特征空间中,构建线性回归模型,以 “结构风险最小化” 为目标(既最小化训练误差,又控制模型复杂度),避免过拟合;
- 参数求解:通过最小二乘法求解模型参数(如核函数参数、正则化参数),无需迭代优化,计算效率远高于传统 SVM。
(2)LSSVM 在多输出场景下的优势与短板
- 优势:
- 非线性拟合能力强:能轻松捕捉多输入与多输出间的复杂关联(如 “反应温度 × 搅拌速度” 对产品硬度、韧性的交互影响);
- 泛化能力优:基于结构风险最小化原则,即便多输入变量存在噪声,也能保持稳定的预测效果;
- 计算效率高:相比传统 SVM,多输出场景下的训练速度可提升 30%-50%,避免 “维度灾难” 导致的计算停滞。
- 短板:
- 参数敏感性高:模型性能高度依赖两个关键参数 ——核函数参数(如 RBF 核的宽度参数 σ) 和 正则化参数 γ。参数设置不当会直接导致模型 “欠拟合”(σ 过大、γ 过小,无法捕捉多变量关联)或 “过拟合”(σ 过小、γ 过大,对噪声敏感);
- 调参效率低:传统调参方法(如网格搜索、随机搜索)要么 “暴力遍历” 耗时久,要么易陷入局部最优,难以找到适配多输出场景的最优参数组合。
2. 遗传算法(GA):全局参数寻优的 “智能导航仪”
遗传算法(Genetic Algorithm,GA)是一种基于生物进化理论的启发式优化算法,模拟 “自然选择、交叉、变异” 的生物进化过程,能在复杂参数空间中高效寻找全局最优解。它的核心优势在于:无需复杂的数学推导,就能解决高维、非线性的参数寻优问题,恰好能弥补 LSSVM “参数调优难” 的短板。
(1)GA 的核心原理:模拟生物进化的 “迭代优化”
GA 的参数寻优过程,可类比生物种群的进化过程,关键步骤包括:
- 种群初始化:将待优化的参数组合(如 LSSVM 的 σ 和 γ)编码为 “染色体”(如二进制编码、实数编码),多个染色体构成 “种群”(如种群规模为 50,即包含 50 组参数组合);
- 适应度评估:定义 “适应度函数”(如多输出预测的平均 MAE),评估每个染色体(参数组合)对应的 LSSVM 模型性能 —— 适应度值越小,参数组合越优;
- 选择操作:模拟 “自然选择”,保留适应度优的染色体(如通过轮盘赌选择、锦标赛选择),淘汰适应度差的染色体,确保种群向更优方向进化;
- 交叉操作:模拟 “基因重组”,对选中的染色体进行交叉(如单点交叉、两点交叉),生成新的染色体(新参数组合),丰富种群多样性;
- 变异操作:模拟 “基因突变”,以较低概率(如变异概率 0.01)随机改变染色体的部分基因(如微调 σ 或 γ 的值),避免种群陷入局部最优;
- 迭代终止:重复 “适应度评估→选择→交叉→变异” 过程,直到达到最大迭代次数或适应度值收敛,输出全局最优染色体(最优参数组合)。
(2)GA 适配 LSSVM 参数寻优的优势
在多输入多输出场景下,GA 为 LSSVM 参数调优提供三大支持:
- 全局寻优能力强:通过交叉、变异操作,避免陷入局部最优,能找到更适配多变量复杂关系的 σ 和 γ 组合;
- 寻优效率高:相比网格搜索的 “暴力遍历”,GA 通过种群进化快速聚焦最优参数区域,多输出场景下的调优时间可缩短 60% 以上;
- 易适配多目标优化:可将多个输出变量的预测误差(如产品纯度 MAE、硬度 MAE)综合为一个适应度函数,实现对所有输出的同步优化。
⛳️ 运行结果
📣 部分代码
function [out1,out2] = mapminmax(in1,in2,in3,in4)
%MAPMINMAX Map matrix row minimum and maximum values to [-1 1].
%
% Syntax
%
% [y,ps] = mapminmax(x,ymin,ymax)
% [y,ps] = mapminmax(x,fp)
% y = mapminmax('apply',x,ps)
% x = mapminmax('reverse',y,ps)
% dx_dy = mapminmax('dx',x,y,ps)
% dx_dy = mapminmax('dx',x,[],ps)
% name = mapminmax('name');
% fp = mapminmax('pdefaults');
% names = mapminmax('pnames');
% mapminmax('pcheck', fp);
%
% Description
%
% MAPMINMAX processes matrices by normalizing the minimum and maximum values
% of each row to [YMIN, YMAX].
%
% MAPMINMAX(X,YMIN,YMAX) takes X and optional parameters,
% X - NxQ matrix or a 1xTS row cell array of NxQ matrices.
% YMIN - Minimum value for each row of Y. (Default is -1)
% YMAX - Maximum value for each row of Y. (Default is +1)
% and returns,
% Y - Each MxQ matrix (where M == N) (optional).
% PS - Process settings, to allow consistent processing of values.
%
% MAPMINMAX(X,FP) takes parameters as struct: FP.ymin, FP.ymax.
% MAPMINMAX('apply',X,PS) returns Y, given X and settings PS.
% MAPMINMAX('reverse',Y,PS) returns X, given Y and settings PS.
% MAPMINMAX('dx',X,Y,PS) returns MxNxQ derivative of Y w/respect to X.
% MAPMINMAX('dx',X,[],PS) returns the derivative, less efficiently.
% MAPMINMAX('name') returns the name of this process method.
% MAPMINMAX('pdefaults') returns default process parameter structure.
% MAPMINMAX('pdesc') returns the process parameter descriptions.
% MAPMINMAX('pcheck',fp) throws an error if any parameter is illegal.
%
% Examples
%
% Here is how to format a matrix so that the minimum and maximum
% values of each row are mapped to default interval [-1,+1].
%
% x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
% [y1,ps] = mapminmax(x1)
%
% Next, we apply the same processing settings to new values.
%
% x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
% y2 = mapminmax('apply',x2,ps)
%
% Here we reverse the processing of y1 to get x1 again.
%
% x1_again = mapminmax('reverse',y1,ps)
%
% Algorithm
%
% It is assumed that X has only finite real values, and that
% the elements of each row are not all equal.
%
% y = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin;
%
% See also FIXUNKNOWNS, MAPSTD, PROCESSPCA, REMOVECONSTANTROWS
% Copyright 1992-2007 The MathWorks, Inc.
% $Revision: 1.1.6.11 $
% Process function boiler plate script
boiler_process
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name
function n = name
n = 'Map Minimum and Maximum';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Parameter Defaults
function fp = param_defaults(values)
if length(values)>=1, fp.ymin = values{1}; else fp.ymin = -1; end
if length(values)>=2, fp.ymax = values{2}; else fp.ymax = fp.ymin + 2; end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Parameter Names
function names = param_names()
names = {'Mininum value for each row of Y.', 'Maximum value for each row of Y.'};
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Parameter Check
function err = param_check(fp)
mn = fp.ymin;
mx = fp.ymax;
if ~isa(mn,'double') || any(size(mn)~=[1 1]) || ~isreal(mn) || ~isfinite(mn)
err = 'ymin must be a real scalar value.';
elseif ~isa(mx,'double') || any(size(mx)~=[1 1]) || ~isreal(mx) || ~isfinite(mx) || (mx <= mn)
err = 'ymax must be a real scalar value greater than ymin.';
else
err = '';
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% New Process
function [y,ps] = new_process(x,fp)
% Replace NaN with finite values in same row
rows = size(x,1);
for i=1:rows
finiteInd = find(full(~isnan(x(i,:))),1);
if isempty(finiteInd)
xfinite = 0;
else
xfinite = x(finiteInd);
end
nanInd = isnan(x(i,:));
x(i,nanInd) = xfinite;
end
ps.name = 'mapminmax';
ps.xrows = size(x,1);
ps.xmax = max(x,[],2);
ps.xmin = min(x,[],2);
ps.xrange = ps.xmax-ps.xmin;
ps.yrows = ps.xrows;
ps.ymax = fp.ymax;
ps.ymin = fp.ymin;
ps.yrange = ps.ymax-ps.ymin;
if any(ps.xmax == ps.xmin)
warning('NNET:Processing','Use REMOVECONSTANTROWS to remove rows with constant values.');
end
y = apply_process(x,ps);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Apply Process
function y = apply_process(x,ps)
Q = size(x,2);
oneQ = ones(1,Q);
rangex = ps.xmax-ps.xmin;
rangex(rangex==0) = 1; % Avoid divisions by zero
rangey = ps.ymax-ps.ymin;
y = rangey * (x-ps.xmin(:,oneQ))./rangex(:,oneQ) + ps.ymin;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Reverse Process
function x = reverse_process(y,ps)
Q = size(y,2);
oneQ = ones(1,Q);
rangex = ps.xmax-ps.xmin;
rangey = ps.ymax-ps.ymin;
x = rangex(:,oneQ) .* (y-ps.ymin)*(1/rangey) + ps.xmin(:,oneQ);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Derivative of Y w/respect to X
function dy_dx = derivative(x,y,ps);
Q = size(x,2);
rangex = ps.xmax-ps.xmin;
rangey = ps.ymax-ps.ymin;
d = diag(rangey ./ rangex);
dy_dx = d(:,:,ones(1,Q));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Derivative of Y w/respect to X
function dx_dy = reverse_derivative(x,y,ps);
Q = size(x,2);
rangex = ps.xmax-ps.xmin;
rangey = ps.ymax-ps.ymin;
d = diag(rangex ./ rangey);
dx_dy = d(:,:,ones(1,Q));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function p = simulink_params(ps)
p = ...
{ ...
'xmin',mat2str(ps.xmin);
'xmax',mat2str(ps.xmax);
'ymin',mat2str(ps.ymin);
'ymax',mat2str(ps.ymax);
};
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function p = simulink_reverse_params(ps)
p = ...
{ ...
'xmin',mat2str(ps.xmin);
'xmax',mat2str(ps.xmax);
'ymin',mat2str(ps.ymin);
'ymax',mat2str(ps.ymax);
};
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇