✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
数字图像水印技术通过在载体图像中嵌入不可见的水印信息,实现版权保护、内容认证等功能。本方案结合离散小波变换(DWT) 的多分辨率特性、哈达玛变换(HD) 的能量分散优势与奇异值分解(SVD) 的稳定性,构建鲁棒性与不可见性均衡的水印系统,并通过常见图像攻击测试(如噪声、滤波、压缩)验证性能,采用 PSNR、SSIM、NC 三项指标量化评估。
一、核心技术原理
1. 混合变换技术优势
变换技术 | 核心作用 | 技术特点 |
---|---|---|
离散小波变换(DWT) | 载体图像分解 | 将图像分解为低频(LL)、水平高频(LH)、垂直高频(HL)、对角高频(HH)子带;低频子带含图像主要信息,嵌入水印可平衡不可见性与鲁棒性 |
哈达玛变换(HD) | 水印预处理 | 对水印图像进行正交变换,分散能量、降低相关性,减少嵌入对载体图像视觉质量的影响 |
奇异值分解(SVD) | 水印嵌入 / 提取 | 对 DWT 低频子带进行 SVD 分解,将水印信息嵌入奇异值矩阵;奇异值对常见图像处理(如压缩、滤波)具有强稳定性 |
2. 水印系统流程
(1)水印嵌入流程
- 载体图像预处理
:将载体图像(如 256×256 灰度图)进行 1 级 DWT 分解,得到 LL(低频)、LH、HL、HH 子带;
- 水印预处理
:对二值 / 灰度水印图像(如 64×64)进行 HD 变换,得到 HD 域水印矩阵,再归一化处理;
- SVD 嵌入
:对 DWT 低频子带(LL)进行 SVD 分解,得到奇异值矩阵
S
、左奇异向量U
、右奇异向量V
;通过调整因子α
(控制水印强度)将 HD 域水印嵌入S
,生成新奇异值矩阵S'
; - 重构载体图像
:由
U
、S'
、V
进行 SVD 逆变换,得到含水印的低频子带LL'
;结合原高频子带(LH、HL、HH)进行 DWT 逆变换,生成含水印图像。
(2)水印提取流程
- 含水印图像预处理
:对含水印图像进行 1 级 DWT 分解,提取低频子带
LL'
; - SVD 提取
:对
LL'
进行 SVD 分解,得到嵌入水印后的奇异值矩阵S'
;根据嵌入时的调整因子α
,从S'
中提取 HD 域水印矩阵; - 水印恢复
:对提取的 HD 域水印矩阵进行哈达玛逆变换,得到恢复水印;
- 性能评估
:计算恢复水印与原始水印的归一化相关系数(NC),评估鲁棒性;计算载体图像与含水印图像的峰值信噪比(PSNR)、结构相似性指数(SSIM),评估不可见性。
⛳️ 运行结果
📣 部分代码
%% Speckle Noise Attack
SpeckleNoiseImageAttacked = imnoise(watermarked_image, 'speckle', 0.001);
end
🔗 参考文献
[1]刘微容,张超鹏,刘朝荣,等.基于小波域稀疏表示和自适应混合样本回归的图像超分辨率重建算法[J].兰州理工大学学报, 2018, 44(3):8.DOI:10.3969/j.issn.1673-5196.2018.03.018.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇