基于粒子群算法优化长短期记忆神经网络(PSO-LSTM)的数据多变量时序预测 Matlab代码(多输入单输出)

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、研究背景与意义

多变量时序预测(Multivariate Time Series Prediction, MTSP)是时序分析领域的重要方向,旨在利用多个相互关联的时序变量(如气象数据中的温度、湿度、气压、风速,工业数据中的压力、流量、温度、转速),预测目标变量的未来取值(多输入单输出或多输入多输出),广泛应用于气象预报、能源负荷调度、工业过程监控、金融风险预警等关键场景。

传统多变量时序预测方法存在明显局限:一方面,ARIMA、VAR 等线性模型难以捕捉变量间的非线性关联与长时序依赖;另一方面,长短期记忆神经网络(LSTM)虽能有效处理非线性与长时序问题,但其性能高度依赖超参数(如隐藏层神经元数、学习率、时间步长),而传统超参数优化方法(如网格搜索、随机搜索)存在 “搜索效率低、易陷入局部最优、计算成本高” 的缺陷 —— 例如,仅优化 3 个关键超参数,网格搜索就需遍历数十甚至上百组组合,且难以覆盖超参数空间的最优区域。

粒子群算法(Particle Swarm Optimization, PSO)作为模拟鸟群觅食行为的智能优化算法,具有 “全局寻优能力强、收敛速度快、参数设置简单” 的优势。将 PSO 用于 LSTM 超参数优化,可高效搜索最优超参数组合,解决传统优化方法的痛点,充分发挥 LSTM 对多变量时序数据的拟合能力。本文提出的 PSO-LSTM 模型,为多变量时序预测提供 “高精度、高效率、强鲁棒性” 的解决方案,对提升工程场景中复杂时序预测任务的可靠性与实用性具有重要意义

⛳️ 运行结果

📣 部分代码

close  all

%% 数据读取

geshu=200;%训练集的个数

%读取数据

shuru=xlsread('input.xlsx');

shuchu=xlsread('output.xlsx');

nn = randperm(size(shuru,1));%随机排序

% nn=1:size(shuru,1);%正常排序

input_train =shuru(nn(1:geshu),:);

input_train=input_train';

output_train=shuchu(nn(1:geshu),:);

output_train=output_train';

input_test =shuru(nn((geshu+1):end),:);

input_test=input_test';

output_test=shuchu(nn((geshu+1):end),:);

output_test=output_test';

%样本输入输出数据归一化

[aa,bb]=mapminmax([input_train input_test]);

[cc,dd]=mapminmax([output_train output_test]);

global inputn outputn shuru_num shuchu_num XValidation YValidation

[inputn,inputps]=mapminmax('apply',input_train,bb);

[outputn,outputps]=mapminmax('apply',output_train,dd);

shuru_num = size(input_train,1); % 输入维度

shuchu_num = 1;  % 输出维度

dam = 10; % 验证集个数,验证集是从训练集里面取的数据

idx = randperm(size(inputn,2),dam);

XValidation = inputn(:,idx);

inputn(:,idx) = [];

YValidation = outputn(idx);

outputn(idx) = [];

YValidationy = output_train(idx);

output_train(idx) = [];

%%

% 1. 寻找最佳参数

NN=5;                   %初始化群体个数

D=2;                    %初始化群体维数,

T=10;                   %初始化群体最迭代次数

c1=2;                   %学习因子1

c2=2;                   %学习因子2

%用线性递减因子粒子群算法

Wmax=1.2; %惯性权重最大值

Wmin=0.8; %惯性权重最小值

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%每个变量的取值范围

ParticleScope(1,:)=[10 200];  % 中间层神经元个数

ParticleScope(2,:)=[0.01 0.15]; % 学习率

ParticleScope=ParticleScope';

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值