交通物流模型 | Python实现基于张量分解的交通流量时空模式挖掘(出租车车载GPS数据、公交卡刷卡数据、POI的分布数据)

本文通过上海市公交卡刷卡、出租车GPS数据和POI分布,挖掘交通流量时空模式。采用张量分解方法,分析地铁和出租车的时空模式差异,利用深度神经元网络进行交通流量重构,结果显示该方法具有较高准确性。研究还包括数据采集、张量分解算法对比和模型设计等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


效果一览

9

12
13

文章概述

一般出行行程通常都由某种明确目的驱使,例如上班、购物或娱乐,出行的起始区域因其承担功能的不同,通常能够反映出用户的出行目的,于此同时,从宏观来看,区域之间的交通流量在一天内的变化规律也能够反映出区域的功能,此外,由于出行的紧迫程度等因素的差异,人们出行时在不同情况下,可能会采用不同的通行方式,目前,地铁、公交、出租车是大型城市主要的三种出行方式,智能公交卡刷卡日志记录了城市内人口乘坐公交或地铁的每一次行程,包括出行的时间和起止站点,出租车车载GPS能够对出租车的位置进行定位得到出租车的行驶轨迹,结合出租车传感器数据能够进一步获知出租车的状态,例如是否载客,从而能够推测出乘客每次乘坐出租车的详细行程。本项目基于上海市智能公交卡刷卡日志记录、出租车车载GPS轨迹日志记录,以及上海市兴趣点POI的分布等数据,对城市区域交通流量的时、空模式进行了挖掘,基于抽取不同交通

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab建模攻城师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值