import torch.nn.functional as F
#输入:5x5
input=torch.tensor([[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]])
#卷积核3x3
kernel=torch.tensor([[1,2,1],
[0,1,0],
[2,1,0]])
#reshape 因为conv2d input要求(minibatch,channel,h,w)
input=torch.reshape(input,(1,1,5,5))
kernel=torch.reshape(kernel,(1,1,3,3))
#stride:步长
output=F.conv2d(input,kernel,stride=1)
print(output)
output1=F.conv2d(input,kernel,stride=2)
print(output1)
output2=F.conv2d(input,kernel,stride=1,padding=1)#默认的padding为0
print(output2)
#output
# tensor([[[[10, 12, 12],
# [18, 16, 16],
# [13, 9, 3]]]])
# tensor([[[[10, 12],
# [13, 3]]]])
# tensor([[[[ 1, 3, 4, 10, 8],
# [ 5, 10, 12, 12, 6],
# [ 7, 18, 16, 16, 8],
# [11, 13, 9, 3, 4],
# [14, 13, 9, 7, 4]]]])
【无标题】
最新推荐文章于 2025-04-15 10:48:14 发布