【无标题】

这段代码展示了如何在PyTorch中进行卷积操作。输入是一个5x5的张量,卷积核为3x3,通过改变stride和padding,演示了不同参数对输出的影响,包括正常步长和填充为1的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import torch.nn.functional as F

#输入:5x5
input=torch.tensor([[1,2,0,3,1],
                    [0,1,2,3,1],
                    [1,2,1,0,0],
                    [5,2,3,1,1],
                    [2,1,0,1,1]])

#卷积核3x3
kernel=torch.tensor([[1,2,1],
                     [0,1,0],
                     [2,1,0]])

#reshape 因为conv2d input要求(minibatch,channel,h,w)
input=torch.reshape(input,(1,1,5,5))
kernel=torch.reshape(kernel,(1,1,3,3))

#stride:步长
output=F.conv2d(input,kernel,stride=1)
print(output)
output1=F.conv2d(input,kernel,stride=2)
print(output1)
output2=F.conv2d(input,kernel,stride=1,padding=1)#默认的padding为0
print(output2)
 
#output
# tensor([[[[10, 12, 12],
#           [18, 16, 16],
#           [13,  9,  3]]]])
# tensor([[[[10, 12],
#           [13,  3]]]])
# tensor([[[[ 1,  3,  4, 10,  8],
#           [ 5, 10, 12, 12,  6],
#           [ 7, 18, 16, 16,  8],
#           [11, 13,  9,  3,  4],
#           [14, 13,  9,  7,  4]]]])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值