数据挖掘算法:协同过滤、聚类、分类

数据挖掘算法是 “将无序数据转化为业务规律” 的核心手段,三类算法覆盖 “推荐、分群、预测” 三大核心场景,技术逻辑清晰且落地性强。

一、协同过滤:个性化推荐的核心算法

技术定义

协同过滤(Collaborative Filtering, CF)是基于 “用户 / 物品相似性” 的推荐算法,无需依赖物品属性(如商品类别、文本描述),仅通过 “用户 - 物品交互数据”(点击、购买、评分)推荐用户可能喜欢的物品,是电商、视频平台 “个性化推荐” 的核心技术。

核心类型(技术视角)

协同过滤主要分两类,适用场景略有差异:

  • 基于用户的 CF(User-CF):先计算 “目标用户与其他用户的兴趣相似度”(如共同交互物品越多,相似度越高),再推荐 “相似用户喜欢但目标用户未交互的物品”;
  • 基于物品的 CF(Item-CF):先计算 “物品间的相似度”(如买过物品 X 的用户大多也买物品 Y,则 X 与 Y 相似),再推荐 “目标用户已交互物品的相似物品”。
通俗类比与实例

协同过滤的逻辑就是 “物以类聚,人以群分”:

  • 基于用户 CF:你和小王都买了《机器学习实战》,小王还买了《深度学习入门》,系统就猜 “你和小王兴趣像”,给你推《深度学习入门》;
  • 基于物品 CF:买过《Python 编程书》的用户,80% 还买了《SQL 实战》,那你只要买了前者,系统就推后者 —— 不用管书的内容,只看 “买的人重合度”。
关键优化:矩阵分解

技术痛点:用户 - 物品交互矩阵通常 99% 以上是 “空白”(用户未点击 / 购买),导致相似性计算不准确(数据稀疏性)。
矩阵分解(如 FunkSVD) 是核心解决方案:将 “用户 - 物品交互矩阵” 分解为 “用户特征矩阵”(如用户对 “科技”“文艺” 的偏好度)和 “物品特征矩阵”(如物品的 “科技属性”“文艺属性”),通过低维特征向量计算相似度,大幅降低稀疏性影响。

二、聚类

技术定义

聚类(Clustering)是无监督学习算法(无需人工标注类别标签),核心逻辑是 “将相似样本归为同一簇,不相似样本归为不同簇”,目标是实现 “簇内相似度高、簇间相似度低”,适用于 “未知数据规律下的自动分群”。

核心算法(技术视角)

两类最常用的聚类算法,适配不同数据分布:

  • K-Means:需手动指定簇数 K,通过 “随机选 K 个中心点→样本分配到最近中心点→更新中心点→迭代至稳定” 的流程实现分群,适合样本呈 “球形簇” 分布的场景;
  • DBSCAN:基于 “密度” 定义簇(高密度区域为簇,低密度区域为噪声),无需指定簇数,可自动识别任意形状的簇,且能过滤异常样本,适合非球形簇或需识别异常的场景。
通俗类比与实例

聚类就像 “不用老师教,自己给物品分类的机器人”:

  • K-Means:你说 “把 10 万电商用户分成 3 组”,机器人根据 “消费金额 + 购买频率”,自动分出 “高价值用户”(月花 5000+)、“普通用户”(月花 500-2000)、“低活跃用户”(月花 < 100),后续针对不同组做差异化运营;
  • DBSCAN:分析城市交通数据时,机器人自动把 “早高峰堵点” 归成一簇,“平峰畅通路段” 归成另一簇,还能标出 “某条平时不堵、今天突然堵的路”(异常点),辅助交通调度。

三、分类

技术定义

分类(Classification)是监督学习算法(需先提供 “带标签的训练数据”,如 “垃圾邮件 = 1,正常邮件 = 0”),核心逻辑是 “从训练数据中学习‘特征→标签’的映射规律,再对新数据预测标签”,适用于 “已知类别体系下的预测场景”。

核心算法(技术视角)

三类主流分类算法,从简单到复杂适配不同需求:

  • 逻辑回归:基于线性模型输出 “样本属于某类的概率”,可解释性强(能量化每个特征的影响权重),适合二分类场景(如 “用户是否逾期”“交易是否欺诈”);
  • 决策树:模拟人类 “逐步判断” 逻辑,通过 “特征条件分支” 生成树状结构(如 “交易金额 > 1 万?→是;交易地在国外?→是→欺诈”),可解释性强,支持多分类;
  • 随机森林:“集成算法”,通过多棵决策树投票输出结果(如 100 棵树中 60 棵预测 “欺诈”,则最终结果为 “欺诈”),抗过拟合能力强,准确率高于单棵决策树,适合高准确率需求场景。
通俗类比与实例

分类就像 “先学规则、再做判断的实习生”:

  • 教它认垃圾邮件:先给 1000 封邮件,告诉它 “含‘中奖’‘免费领’的是垃圾邮件”,它学完后,再收到新邮件,看到 “免费领手机” 就会判断 “这是垃圾邮件”;
  • 用随机森林做 “用户是否下单预测”:100 棵 “决策树实习生” 分别看 “用户浏览时长、加购次数、是否领券”,60 棵说 “会下单”,40 棵说 “不会”,最终按多数结果推荐运营策略(如给 “可能下单” 的用户发满减券)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值