动手深度学习-pytorch线性代数

  • 标量

  • 简单操作

  • 长度

  • 向量

  • 简单操作

  • 长度

  • 其他操作

  • 矩阵

  • 简单操作

  • 乘法(矩阵*向量)

  • 乘法(矩阵*矩阵)

  • 范数

  • 取决于如何衡量b和c的长度

  • 常见范数

  • 矩阵范数:最小的满足的上面公式的值

  • Frobenius范数

  • 特殊矩阵

  • 对称和反对称

  • 正定

  • 正交矩阵

  • 置换矩阵

  • 特征向量和特征值

  • 不被矩阵改变方向的向量

  • 对称矩阵总是可以找到特征向量

  • 线性代数实现

  • 标量由只有一个元素的张量表示

  • 可以将向量视为表标量值组成的列表

  • 通过张量的索引来访问任一元素

  • 访问张量的长度

  • 只有一个轴的张量,形状只有一个元素

  • 通过指定两个分量m和n来创建一个形状为m*n的矩阵

  • 矩阵的转置

  • 对称矩阵A等于其转置

  • 可以构建具有更多轴的数据结构

  • 给定具有任何形状的两个张量,任何按元素二元运算的结果都将是相同形状的张量

  • 两个矩阵的按元素乘法称为哈达玛积

  • 计算其元素的和

  • 表示任意形状张量的元素和

  • 指定求和汇总张量的轴

  • 维度原本是(2, 5, 4),按axis=0求和,即按第一个维度求和,结果维度就是(5, 4)

  • 维度原本是(2, 5, 4),按axis=1求和,即按第二个维度求和,结果维度就是(2, 4)

  • 也可以同时指定两个维度

  • 一个与求和相关的量是 平均值

  • 计算总和或均值时候保持轴数不变

  • 通过广播将A除以sum_A

  • 某个轴计算A元素的累积总和

  • 点积是相同位置的按元素乘积的和

  • 可以通过执行按元素乘法,然后进行求和来表示两个向量的点积

  • 矩阵向量积Ax是一个长度为m的列向量

  • 可以将矩阵-矩阵乘法AB看做是简单的执行m次矩阵-向量积,并将结果拼接在一起,形成一个n*m的矩阵

  • 范数

  • L1范数

  • L2范数

  • 矩阵

  • 注意有无keepdims=True的区别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Knoka705

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值