ST表(C++实现)

本小白在学习线段树之前,先进行了ST表的学习,这个可以作为线段树的前置操作来学习

理解ST表的前置知识

可重复贡献问题

可重复贡献问题 是指对于运算 optoptopt,满足 x opt x=xx\ opt\ x=xx opt x=x,则对应的区间询问就是一个可重复贡献问题。例如,最大值有 max(x,x)=xmax(x,x)=xmax(x,x)=xgcdgcdgcdgcd(x,x)=xgcd(x,x) = xgcd(x,x)=x,所以 RMQRMQRMQ 和区间 gcdgcdgcd就是一个可重复贡献问题。像区间和就不具有这个性质,如果求区间和的时候采用的预处理区间重叠了,则会导致重叠部分被计算两次,这是我们所不愿意看到的。另外,optoptopt 还必须满足结合律才能使用 ST 表求解。

以上这段来自于 oi−wikioi-wikioiwiki 对于可重复贡献问题的讲解,接下来说说 我的理解

其实可重复贡献问题的意思就是,对于每一个你取到的元素来说,多次进行 optoptopt 运算并不影响最终的答案,举个例子,对于 arr[5]=[1,2,3,4,5]arr[5]=[1,2,3,4,5]arr[5]=[1,2,3,4,5] 这个数组来说,如果我们要求这个数组的最大值,即便我在运算中多算了几次 arr[1]arr[1]arr[1],都是不会影响到我最终的结果是 555 的,反之,如果我要算这个数组的前缀和,在计算以 arr[2]arr[2]arr[2] 为区间末尾的前缀和时,如果多加了几次 arr[1]arr[1]arr[1] 那么最终的答案将会出现错误。由此看来,区间最大值就是一个可重复贡献问题,而区间和就不是。

(好理解点了吗?)

倍增

(这个是本算法的实现原理,如果想直接使用可以直接看正文啦)

什么是倍增?

顾名思义,也就是不停地翻倍。它能够使线性的处理转化为对数级的处理,大大地优化时间复杂度。

举个例子也许就明白啦:

如何用尽可能少的砝码称量出 [0,1048575][0,1048575][0,1048575] 之间的所有重量?(只能在天平的一端放砝码)

答案其实很简单,就是选择重量为 1,2,4,8,...,2191,2,4,8,...,2^{19}1,2,4,8,...,219 的砝码即可,从 104857510485751048575 变成了 202020 ,有没有体会到倍增的作用呢。

而且即便我们将重量翻倍增加,我们也只需要多加一个砝码,这是「对数级」的增长速度,因为砝码的个数和 log2(weight)log_2(weight)log2(weight) 成正比

倍增的应用

这里我们不多说,说个最常用的吧(毕竟不是主要讲倍增):快速幂

我们要求出 ana^nan 这样的问题,这里的 nnn 很可能是一个非常大的数字,如果我们使用如下代码:

int qpow(int a, int n){
      int ans = 1;
      while(n--){
          ans *= a;
      }
      return ans;
 }

不用怀疑的是,确实能做,但是复杂度是 O(n)O(n)O(n) 级别的,并非最优解,而快速幂的目的是达到 O(log n)O(log\ n)O(log n),从而给你的其他算法空出一些时间来。

快速幂做法很好懂:an=(an/2)2∗an%2a^n = (a^{n/2})^2*a^{n\%2}an=(an/2)2an%2 ,通过不断地将 n/2n/2n/2 ,我们把 nnn 的规模降低为之前的一半,最终到 nnn 为0或1的情况单独讨论,那么我们就得到了递归版本的快速幂:

int qpow(int a, int n)
    {
        if (n == 0) 
            return 1;
        else if (n % 2 == 1)
            return qpow(a, n - 1) * a;
        else //降低规模,开始递归 qpow(a,n/2)
        {
            int temp = qpow(a, n / 2);
            return temp * temp;
        }
    }

结束了前置知识以后,我们就开始ST表的学习

什么是ST表?

ST表(Sparse Table),也就是稀疏表,是一种用来解决可重复贡献问题的数据结构,主要用来解决 **RMQRMQRMQ (区间最大值/最小值查询)**问题,应用了倍增的思想,让其能够做到 O(n log n)O(n\ log\ n)O(n log n) 预处理,O(1) 来查询每个区间。

优点:查询速度比线段树都快

缺点:无法修改,根本改不了一点

ST表使用一个二维数组 f[i][j]f[i][j]f[i][j] 来表示区间 [i, i+2j−1][i,\ i+2^j-1][i, i+2j1] 的询问答案,以下我们将以区间最大值来举例。

预处理

起始点是 f[i][0]=aif[i][0]=a_if[i][0]=ai ,根据我们的定义,第二维就相当于倍增的时候走了 2j−12^j-12j1 步,那么就可以根据倍增的思路来写状态转移方程:f[i][j]=max(f[i][j−1],f[i+2j−1][j−1])f[i][j]=max(f[i][j-1],f[i+2^{j-1}][j-1])f[i][j]=max(f[i][j1],f[i+2j1][j1]) ,理解不了的可以看一下图,f[i][j−1]f[i][j-1]f[i][j1] 就是从 iii 开始走 2j−1−12^{j-1}-12j11 步,那么后半段就是从 i+2j−1i+2^{j-1}i+2j1 开始,到 i+2j−1i+2^j-1i+2j1 结束
在这里插入图片描述

查询

查询的时候,我们要找到两个 [l,r][l,r][l,r] 的子区间,由于之前说过是可重复贡献问题,因此这两个子区间哪怕重叠也没有关系,只要两个子区间的并集是 [l,r][l,r][l,r] ,我们就能够得到正确的结果

那么,为了避免选择错误的麻烦,我们直接让前一个子区间的右端点尽可能靠近 rrr ,后一个子区间的左端点尽可能靠近 lll,那么当 l+2s−1=rl+2^s-1=rl+2s1=rr−2s+1=lr-2^s+1=lr2s+1=l 时,我们能得到 s=log2(r−l+1)s=log_2(r-l+1)s=log2(rl+1) ,但我们知道 sss 为整数,因此 s=⌊log2(r−l+1)⌋s=\lfloor log_2(r-l+1)\rfloors=log2(rl+1)⌋

小tips:因为这里的 logloglog 其实还是比较花时间的,因此我们也可以提前进行预处理 logloglog

在这里插入图片描述

废话不再多说了,进入show code环节

模板(洛谷P3865)

题目背景

这是一道 ST 表经典题——静态区间最大值

请注意最大数据时限只有 0.8s,数据强度不低,请务必保证你的每次查询复杂度为 O(1)O(1)O(1)。若使用更高时间复杂度算法不保证能通过。

如果您认为您的代码时间复杂度正确但是 TLE,可以尝试使用快速读入:

inline int read()
{
	int x=0,f=1;char ch=getchar();
	while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
	while (ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
	return x*f;
}

函数返回值为读入的第一个整数。

快速读入作用仅为加快读入,并非强制使用。

题目描述

给定一个长度为 NNN 的数列,和 $ M $ 次询问,求出每一次询问的区间内数字的最大值。

输入格式

第一行包含两个整数 N,MN,MN,M,分别表示数列的长度和询问的个数。

第二行包含 NNN 个整数(记为 aia_iai),依次表示数列的第 iii 项。

接下来 MMM 行,每行包含两个整数 li,ril_i,r_ili,ri,表示查询的区间为 [li,ri][l_i,r_i][li,ri]

输出格式

输出包含 MMM 行,每行一个整数,依次表示每一次询问的结果。

样例 #1

样例输入 #1
8 8
9 3 1 7 5 6 0 8
1 6
1 5
2 7
2 6
1 8
4 8
3 7
1 8
样例输出 #1
9
9
7
7
9
8
7
9

提示

对于 30%30\%30% 的数据,满足 1≤N,M≤101\le N,M\le 101N,M10

对于 70%70\%70% 的数据,满足 1≤N,M≤1051\le N,M\le {10}^51N,M105

对于 100%100\%100% 的数据,满足 1≤N≤1051\le N\le {10}^51N1051≤M≤2×1061\le M\le 2\times{10}^61M2×106ai∈[0,109]a_i\in[0,{10}^9]ai[0,109]1≤li≤ri≤N1\le l_i\le r_i\le N1liriN

AC代码:

#include<iostream>
#include<cmath> 
#include<stdio.h>
using namespace std;
int f[100005][30];
int a[100005];
int main(){
	int n,m;
	scanf("%d %d",&n,&m);
	// 输入每一个原数据,也就是f[i][0] 
	for(int i=1;i<=n;i++){
		scanf("%d", &f[i][0]);
	}
	// 动态规划处理 
	for(int j=1;j<=log2(m)+1;j++){
		for(int i=1;i+(1<<j)-1<=n;i++){
			f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);
		}
	}
	// 查询开始 
	int l,r;
	for(int i=0;i<m;i++){
		scanf("%d %d", &l, &r);
		int s = log2(r-l+1); //找到s=log2(r-l+1) ,自动向下取整 
		// cout<<s<<" "<<f[l][s]<<" "<<f[r-(1<<s)+1][s]<<endl;
		printf("%d\n", max(f[l][s], f[r - (1 << s) + 1][s])); //查询 
	}
	return 0;
} 

以下是我自己随手的模板(鄙人更喜欢cin)

#include<iostream>
#include<cmath> 
using namespace std;
int f[10005][30];
int a[10005];
int main(){
	int n,m;
	cin>>n>>m;
	// 输入每一个原数据,也就是f[i][0] 
	for(int i=1;i<=n;i++){
		cin>>f[i][0];
	}
	// 动态规划处理 
	for(int j=1;j<=log2(m)+1;j++){
		for(int i=1;i+(1<<j)-1<=n;i++){
			f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);
		}
	}
	// 查询开始 
	int l,r;
	for(int i=0;i<m;i++){
		cin>>l>>r;
		int s = log2(r-l+1); //找到s=log2(r-l+1) ,自动向下取整 
		// cout<<s<<" "<<f[l][s]<<" "<<f[r-(1<<s)+1][s]<<endl;
		cout<<max(f[l][s],f[r-(1<<s)+1][s])<<endl; //查询 
	}
	return 0;
} 

这是本算法小白对于ST表的理解,如有错误望各位指正,多谢!꒰ᐢ⸝⸝•༝•⸝⸝ᐢ꒱

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨楓逸尘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值