自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 LeetCode面试经典150题-每日五题

题解:枚举公共前缀的长度,然后判断就行,因为字符串数组的大小和字符串的长度很小,所以时间复杂度不高。题解:把输入的前后空格去掉,然后使用' '来分割单词就行。题解:直接按照题解模拟一下就行。题解:直接按照题目模拟就行。题解:按照题意模拟就行。

2025-07-30 12:46:42 111

原创 LeetCode面试经典150题-每日五题

题解:pre[i]=nums[0]*nums[1]*nums[2]*....*nums[i]题解:我们枚举起点,然后使用st表来记录一下最小值就行。题解:分别从左和右遍历一遍就行,对于每个位置取最大值。题解:使用变长数组来模拟就行。题解:直接枚举篇数就行。

2025-07-27 10:43:02 104

原创 LeetCode面试经典150题-每日五题

题解:假设我们要达到位置pos,那么我们前一步只能从前面的某个位置i(i+nums[i]>=pos)跳过来,为了求到达位置pos的最小值,我们需要求前面所有能到达位置pos的最小值,那么这就需要线段数来维护了。题解:我们假设一个不递减序列是一段“上坡”的话,那么这个数组一定是由连续的多个“上坡”组成,我们每次用一个“上坡”的最大值减去一个“上坡”的最小值就是答案。dp[j]=min(j->n)+1,其中j=min(dp[k]),其中nums[k]+k==j。题解:每次维护能到达的最大值就行。

2025-07-26 11:28:20 110

原创 LeetCode面试经典150题-每日五题

题解:因为数组是有序的,如果元素相同的话,那么它们的位置也是连续的。所以我们一段一段地找相同元素,用一个指针不断地往前移动。题解:我们先用nums2的元素覆盖掉nums1后面的无效元素。然后对nums1进行排序就行。题解:直接遍历数组一遍找答案就行,因为题目说有答案,那么根据雀巢定理必定只有一个答案。题解:直接调用unique()函数和erase()函数就行。题解:简单模拟一下就行。

2025-07-25 16:07:04 78

原创 算法竞赛-LeetCode第457场周赛题解

思路:手玩一下,发现倒着操作就行。思路:按照时间倒着操作就行。

2025-07-10 16:47:48 190

原创 我的来时路-算法竞赛-牛客周赛 Round 98

题解:因为n很小,因此可以dfs。个因子,因此可以用公式得到。题解:枚举gcd,预处理。题解:简单的三角形判断。题解:简单枚举因子。

2025-07-04 11:05:56 202

原创 Educational Codeforces Round 178 (Rated for Div. 2)(A-E)

思路:先猜测是把剩下的数都变成质数,然后比较一下大小就行。

2025-04-29 00:35:49 166

原创 我的来时路-算法竞赛-华中农业大学第十四届程序设计竞赛(同步赛)题解

思路:根据均值不等式,两次二分,分别求最大的小于等于sum/2的数,最小的大于等于sum/2的数。思路:因为b数组最大值为1e8,所以dp一下就行。思路:先预处理求每个点的战斗力,再dfs+dp。思路:类似数位dp的思想,数位dfs一下。思路:模拟一下就行。思路:基环树模板题。

2025-04-17 17:07:19 494

原创 LeetCode第 443 场周赛题解

思路:dp+树状数组求到中位数的差之和。思路:取前缀最小值就行。

2025-03-31 17:59:17 159

原创 我的来时路-算法竞赛-Educational Codeforces Round 176 (Rated for Div. 2)(A-D)

Educational Codeforces Round 176 (Rated for Div. 2)(A-D)题解

2025-03-18 12:08:01 527

原创 月赛题解-(A-L) 虽然题目出锅了,但也是rk1

月赛题解,有错误请指出。

2025-03-08 20:22:59 218

原创 深度学习-图像增广

例如,我们可以以不同的方式裁剪图像,使感兴趣的对象出现在不同的位置,减少模型对于对象出现位置的依赖。我们还可以调整亮度、颜色等因素来降低模型对颜色的敏感度。使物体以不同的比例出现在图像的不同位置, 这样可以降低模型对目标位置的敏感性。我们可以改变图像颜色的四个方面:亮度、对比度、饱和度和色调。来综合上面定义的不同的图像增广方法,并将它们应用到每个图像。随机改变训练样本可以减少模型对某些属性的依赖,使图像各有50%的几率向上或向下翻转。有50%的几率使图像向左或向右翻转。在对训练图像进行一系列的。

2025-02-18 15:41:47 512

原创 kaggle竞赛-LLM Chatbot Arena: Predicting User Preferences

【代码】kaggle竞赛-大模型分类微调。

2025-02-10 17:43:20 262 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除