- 博客(256)
- 收藏
- 关注
原创 【数据库】Navicat Premium 17 安装
链接: https://pan.baidu.com/s/1xEBuFmR4LGxcApNDBaSNeQ?
2025-09-07 18:41:48
118
原创 【机器学习&深度学习】RAG边界处理策略
边界处理主要有2种策略:1、关键次词限定根据定义的关键词来判断用户问的问题是否与模型的知识库领域相关。但是这个方法存在一个比较严重的弊端,如果用户的问题没有包含指定的关键词,却与模型的知识领域相关,会出现问题不匹配的情况;2、判断重排序过滤节点(推荐)直接判断重排序过滤的节点是否为空,如果为空,则表示检索的内容相关性都不强,从而判断为用户问题与模型的知识库领域不相关;
2025-09-03 19:09:20
872
原创 【机器学习&深度学习】LLM:在检索与重排序中的适用场景
▲LLM 可以做 Embedding,但不划算,实际中几乎不用。▲LLM 可以做 Rerank,尤其适合小规模精排(Top-K → LLM)。▲Embedding 模型是轻量高效的主力,负责大规模建库和初筛。
2025-09-03 12:12:55
792
原创 【机器学习&深度学习】向量检索到重排序:RAG 系统中的优化实践
▲向量检索 提供了高效的初步筛选;▲重排序模型 在 Top-K 候选集中发挥关键作用,让相关文档真正靠前;▲性能与精度权衡:模型越大,精度越高,但延迟也越高,需要结合场景选择合适的 reranker(如 bge-reranker-base 适合在线,bge-reranker-large 适合离线)。
2025-09-02 20:55:10
612
原创 【机器学习&深度学习】向量模型与重排序模型:RAG 的双引擎解析
向量模型 是“广撒网”,帮你找潜在相关文档。重排序模型 是“精挑细选”,帮你从候选里挑出最相关的。
2025-09-02 20:10:10
1270
原创 【机器学习&深度学习】RAG 系统中 Top-k 的最佳实践策略
方法一(相似度分布):适合结果差异大的场景,智能截断。方法二(问题类型):适合业务场景明确,问题模式固定。方法三(rerank):适合高价值场景,要保证答案权威可靠。
2025-09-02 11:49:43
938
原创 【机器学习&深度学习】Embedding 与 RAG:让 AI 更“聪明”的秘密
▲RAG 结合知识库与大模型,充分发挥 LLM 的语言能力,弥补其在专业知识与时效性上的不足。知识库:提供可靠、实时更新的信息源。大模型:负责理解与生成自然语言回答。▲Embedding 是 RAG 系统的核心技术,它将文本转化为语义向量,连接知识库与大模型。其魔力在于:语义理解:捕捉文本深层含义,实现精准匹配。高效检索:支持快速、动态的知识查询,无需重训模型。广泛应用:从法律到企业文档,Embedding 赋予 RAG 强大的领域适应性。
2025-08-29 20:35:56
954
原创 【机器学习&深度学习】RAG vs 微调技术取舍:大型语言模型优化的两种路径
AG 适合用来解决动态知识获取与解释性问题,微调适用于固定场景的性能优化。
2025-08-28 12:23:13
1199
原创 【机器学习&深度学习】AI模型部署策略:API调用 vs 本地部署
▲API 调用 → 低门槛、快速试错、适合中小企业和不敏感场景。▲本地部署 → 数据安全、成本可控、适合高敏感行业和大规模调用。▲医疗、法律等高风险行业 → 推荐使用 32B+ 大模型,以保证专业性、推理能力和合规安全。
2025-08-28 00:27:27
871
原创 【机器学习&深度学习】连续微调与权重合并的陷阱与最佳实践
▲合并后的模型可以继续微调,但如果想保留旧任务能力,推荐采用 多任务训练 或 LoRA 叠加,而不是顺序覆盖。▲不同任务权重不要直接合并,尤其是全量微调权重。对于 LoRA 权重,可以尝试加权合并,但更推荐分开保存、动态加载。
2025-08-26 18:56:32
1217
1
原创 【机器学习&深度学习】多模态典型任务与应用全景
多模态任务几乎覆盖了人类感知的所有维度,从「看、听、说」到「感受」。但在实际场景中,多模态系统的研发与落地往往需要:▲大规模跨模态数据(采集成本高)。▲高算力资源(训练和推理代价大)。▲任务定制化(行业适配复杂)。
2025-08-23 21:09:54
1485
原创 【机器学习&深度学习】模态与多模态的概念
▲模态 是信息的来源与表达形式。▲多模态 是不同模态的协同,帮助 AI 更全面地理解与生成信息。▲人工智能中常见的三大模态,也被称为 3V:Verbal(文本)、Vocal(语音)、Visual(视觉)
2025-08-23 17:09:13
1161
原创 【机器学习&深度学习】自然语言与多模态大模型
▲自然语言大模型:专注于理解和生成文本,擅长处理与语言相关的任务;▲多模态大模型:能同时理解和生成文字、语音、图像、视频等多种数据形态,实现更接近人类感知的智能;
2025-08-23 16:02:42
837
原创 【机器学习&深度学习】LMDeploy的分布式推理实现
▲张量并行:解决了大模型“放不下”的问题;▲KV Cache 量化:显著降低显存占用,支持更长上下文;▲动态显存管理:保障推理过程的稳定性和灵活性;
2025-08-22 20:21:27
1187
原创 【机器学习&深度学习】vLLM的核心优化技术详解
▲PagedAttention 解决显存碎片问题(确保每张GPU的显存高效使用,优化整体性能);▲张量并行 实现多卡扩展;▲连续批处理 提升GPU利用率,
2025-08-22 18:05:53
670
原创 【机器学习&深度学习】大模型分布式推理概述:从显存困境到高并发挑战的解决方案
当模型太大时 —— 使用张量并行来切分参数;当并发太高时 —— 使用流水线并行和连续批处理来提升吞吐。
2025-08-22 12:39:59
1324
原创 【机器学习&深度学习】Ollama、vLLM、LMDeploy对比:选择适合你的 LLM 推理框架
Ollama 以多模型支持和简单易用降低 AI 门槛,适合个人实验;vLLM 和 LMDeploy 则在性能、精度和并发性上占据优势,适合生产环境。
2025-08-20 23:59:38
1047
原创 【机器学习&深度学习】AI大模型高并发挑战:用户负载部署策略
超过最大并发时,要么排队,要么丢弃,要么崩溃。解决办法就是:限流 + 负载均衡 + 缓存 + 异步队列 + 弹性扩展,并且用小模型/缓存削峰。
2025-08-20 20:32:02
1023
1
原创 【机器学习&深度学习】OpenCompass 如何选择合适的开源数据集 & 自定义数据集
▲如果关注 数学 → GSM8K + MATH;▲如果关注 考试/知识 → MMLU、C-Eval、CMMLU;▲如果关注 常识与事实性 → ARC、Winogrande、TruthfulQA;▲如果关注 对话与指令 → MT-Bench、AlpacaEval;▲如果只想快速跑通 → demo 数据集;合理搭配数据集,才能全面、客观地评估你的模型。
2025-08-20 09:39:04
996
原创 【HTML】3D动态凯旋门
形:当径向道路上的汽车到达终点 () 或中心 () 时,它会自动切换到。然后,它计算出一个新的角度和速度,以继续沿环形道路行驶,从而创建平滑过渡。:当环路上的汽车经过径向道路交叉口时,它有很小的机会切换到径向道路。这是通过防止所有汽车同时改变路径并确保动态、逼真的流动进行控制的。:汽车不再有两个完全独立的交通环路,而是具有可以是 或 的属性。这个单一的动画循环可以处理所有汽车,并允许动态路径切换。然后,单个动画循环管理所有汽车的状态和运动,无论其当前路径如何。:双向环形车流(内圈逆时针,外圈顺时针)
2025-08-19 16:28:29
1107
原创 【机器学习&深度学习】OpenCompass:支持的开源评估数据集及使用差异
数据集5大类:知识类 → 适合验证模型在教育、知识库问答、搜索增强等场景的能力。推理类 → 适合检验模型在金融决策、法律推理、科学研究等领域的应用价值。语言类 → 适合对话机器人、写作助手、情感计算等场景。代码类 → 适合 AI 辅助编程、自动化测试、软件开发。多模态类 → 适合智能客服、自动驾驶、图文生成、跨模态搜索。
2025-08-16 15:48:42
740
原创 【机器学习&深度学习】生成式评测
生成式评测就是通过准确性、完整性、流畅性、相关性、创造性等多维指标,结合自动化度量和人工主观打分,全面衡量大模型在开放生成任务中“内容对不对、说得好不好、风格符不符合”的能力。
2025-08-15 20:38:31
1001
原创 【机器学习&深度学习】OpenCompass 评测指标全解析:让大模型评估更科学
▲应用开发优先:准确率、生成质量、ROUGE/LCS;▲研究诊断参考:困惑度、条件对数概率;
2025-08-15 19:41:59
1336
原创 【数据集评估工具】OpenCompass
OpenCompass简介评估数据指标是书生·浦语的生态链中用于数据评估的工具,目前适合做一些“客观评估”。主流方向是一个为了评估大语言模型(Large Language Models, LLMs)以及视觉语言模型(Vision-Language Models, VLMs)的性能而设计的开源平台研发团队OpenCompass 是上海人工智能实验室(Shanghai AI Laboratory)主导研发的,同时有复旦大学、商汤科技(SenseTime)、香港中文大学等多家机构和团队共同参与。
2025-08-15 00:00:08
806
原创 【机器学习&深度学习】归一化层
归一化就是先把所有向量拉成相同长度,只比方向不比大小。归一化就是把每个向量除以它的模长,把所有向量都拉成单位长度,这样在比较时(比如用余弦相似度)只看向量的方向/夹角,不会被原始的大小(如词频、亮度、信号强度)影响——换句话说,归一化把“谁更大”这个因素去掉,只比较“谁更像”。
2025-08-12 16:28:13
700
原创 【机器学习&深度学习】Embedding 模型详解:从基础原理到实际应用场景
Embedding 是将文本等信息转化为向量,并通过相似度计算实现语义理解与应用的核心技术。
2025-08-10 23:53:48
1708
原创 【机器学习&深度学习】模型选型:如何根据模型的参数算出合适的设备匹配?
根据模型的参数量、精度等,来推算它应该放在什么设备上运行,这可以通过显存占用估算 + 推理性能需求来做一个大致匹配。
2025-08-09 23:58:33
763
原创 【机器学习&深度学习】模型选型:如何根据现有设备选择合适的训练模型
▲训练模型的第一步,不是写代码,而是看你手里的硬件。▲显存和显卡类型决定了能走多远。▲不要死磕全参微调,LoRA / QLoRA 是大多数人的性价比之选。
2025-08-09 20:15:47
1022
原创 【机器学习&深度学习】微调训练数据质量
数据质量往往决定了模型的上限。无论是 ChatGPT 的指令微调(Instruction Tuning),还是垂直领域的定制化训练,数据质量评估都是确保模型产出稳定、高质量输出的核心步骤。
2025-08-08 23:57:47
698
原创 【GPT-OSS 全面测评】释放推理、部署和自主掌控的 AI 新纪元
🔓 开放权重:自由下载、微调、商用。⚡ MoE 架构:低延迟 + 高性价比。🛡 强化安全机制:防高风险任务滥用。💻 可本地运行:从 A100 服务器到 AI 笔记本。📈 性能接近专有模型:媲美 o4-mini。
2025-08-08 17:45:51
1345
1
原创 【深度学习&机器学习】构建情绪对话模型:从数据到部署的完整实践
一个优秀的情绪对话系统背后,是数据理解的精度 + 模型设计的温度 + 工程落地的稳定。随着大模型推理能力提升,我们可以更加轻量、柔性地为用户提供真正“共情”的AI对话体验。
2025-08-07 23:46:31
1153
原创 【机器学习&深度学习】大模型应用落地:微调与RAG的角色与实践
▲对于需要高精度、动态更新的场景(如专业问答系统),优先选择RAG,并辅以微调优化用户体验。▲对于需要强品牌化或特定风格的场景,微调是不可或缺的工具。
2025-08-07 21:07:39
737
原创 【机器学习&深度学习】知识蒸馏实战:让小模型拥有大模型的智慧
知识蒸馏技术为AI模型的实际部署开辟了新道路。通过本文的实战演示,我们实现了:将1.5B Qwen模型的知识有效迁移到0.5B模型保持小模型效率的同时获得接近大模型的性能提供完整的PyTorch实现方案知识蒸馏的本质是智慧的传承——它让大模型的深邃思考能被小模型理解和吸收,最终实现"小身材,大智慧"的完美平衡。"好的老师不是灌输知识,而是点燃火焰。" —— 苏格拉底在AI领域,知识蒸馏正是点燃小模型智慧之火的绝佳技术!延伸阅读Q&A:欢迎在评论区留言讨论知识蒸馏的技术问题!
2025-08-06 09:47:10
1217
原创 【机器学习&深度学习】 知识蒸馏
知识蒸馏将大模型的智慧精华高效提炼至轻量化小模型,实现成本降低20倍、推理提速3倍、边缘端无损部署,推动AI民主化与产业普惠落地。
2025-08-05 19:31:17
926
原创 【机器学习&深度学习】模型剪枝
模型剪枝虽能有效减小模型体积和加速推理,但因精度风险高、工程复杂、工具不成熟,当前在工业界应用仍不如量化与轻量模型广泛。
2025-08-05 16:21:36
848
html3D动态凯旋门
2025-08-19
【预训练模型】中文白话文文章生成-gpt2-chiese-cluecorpussmall
2025-07-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人