AcWing 240. 食物链
动物王国中有三类动物 A,B,C,A,B,C,A,B,C,这三类动物的食物链构成了有趣的环形。
AAA 吃 BBB,BBB 吃 CCC,CCC 吃 AAA。
现有 NNN 个动物,以 1∼N1∼N1∼N 编号。
每个动物都是 A,B,CA,B,CA,B,C 中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这 NNN 个动物所构成的食物链关系进行描述:
第一种说法是 1 X Y
,表示 XXX 和 YYY 是同类。
第二种说法是 2 X Y
,表示 XXX 吃 YYY。
此人对 NNN 个动物,用上述两种说法,一句接一句地说出 KKK 句话,这 KKK 句话有的是真的,有的是假的。
当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
- 当前的话与前面的某些真的话冲突,就是假话;
- 当前的话中 XXX 或 YYY 比 NNN 大,就是假话;
- 当前的话表示 XXX 吃 XXX,就是假话。
你的任务是根据给定的 NNN 和 KKK 句话,输出假话的总数。
输入格式
第一行是两个整数 NNN 和 KKK,以一个空格分隔。
以下 KKK 行每行是三个正整数 D,X,YD,X,YD,X,Y两数之间用一个空格隔开,其中 DDD 表示说法的种类。
若 D=1D=1D=1,则表示 XXX 和 YYY 是同类。
若 D=2D=2D=2,则表示 XXX 吃 YYY。
输出格式
只有一个整数,表示假话的数目。
数据范围
1≤N≤500001≤N≤500001≤N≤50000,
0≤K≤1000000≤K≤1000000≤K≤100000
输入样例:
100 7
1 101 1
2 1 2
2 2 3
2 3 3
1 1 3
2 3 1
1 5 5
输出样例:
3
对于此题我给出两种方法:种类并查集,带权并查集
种类并查集:
我们开一个长度为3∗n3*n3∗n的数组来表示动物 iii(1≤i≤n)(1≤i≤n)(1≤i≤n)的三个关系。
根据题意我们知道,当给出两种动物 x,yx,yx,y并且(x,y)≤n(x,y)≤n(x,y)≤n的时候,他们之间只有3种关系。
对于第二个条件的判断,我们不需要分类就可以直接判断了。
if(x>n||y>n)
对于 d=1d=1d=1来说,我们只需要判断yyy是不是xxx的猎物或者天敌即可。
if(find(x+2*n)==find(y)||find(x+n)==find(y)) //前者是判断y是不是x的天敌,后者是判断y是不是x的猎物
当然我们完全可以判断xxx是不是yyy的猎物或者天敌,这两个是等效的👇
if(find(x)==find(y+n)||find(x)==find(y+2*n))
除此之外,我们就认定这句话是真的,这时你可能会有疑惑,我们为什么只需要这样就可以认定其他情况为真的呢,因为除了上面两种情况外,我们剩下:
1、find(x)==find(y),即x与y是同类,这种情况我们是不需要考虑的,因为这明显是句真话。1、find(x)==find(y),即x与y是同类,这种情况我们是不需要考虑的,因为这明显是句真话。1、find(x)==find(y),即x与y是同类,这种情况我们是不需要考虑的,因为这明显是句真话。
2、find(x)!=find(y)&&find(x)!=find(y+n)&&find(x)!=find(y+2∗n);2、find(x)!=find(y)\&\&find(x)!=find(y+n)\&\&find(x)!=find(y+2*n);2、find(x)!=find(y)&&find(x)!=find(y+n)&&find(x)!=find(y+2∗n);
即xxx与yy