自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(19)
  • 收藏
  • 关注

原创 微分方程入门之入门之入门,纯笔记

比如,描述为什么种群数量增加or减少【相对】,比描述为什么它在某个时间点是某个特定值【绝对】更容易。有点类似标量值的多变量函数的二阶导数,因为 二阶导>0,说明是极小值点;二阶导<0,说明是极大值点。(也称为梯度算子,符号为 ∇)是一种微分算子(一个向量),其作用于不同的对象有不同的名称(常微分方程(ODE):函数有一个自变量;偏微分方程(PDE):函数有多个自变量。最早有哈密顿引进,也可叫哈密顿算子。更容易时,微分方程就经常用到了。来描述,力–>代表变化状态的。微分算子,通常用符号 ∇。

2025-07-26 21:47:59 272

原创 在python3.8和pytorch1.8.1的基础上安装tensorflow

以往看的模型都是用pytorch跑就行,但是看到的一个创新点是用tensorflow跑的,迫于无奈,如果想要融入进去就得安装TensorFlow…每次根据电脑性能选择了,接受范围内最适配的底层包进行安装,最后都会发现,我想要安装的最终文件要求更高。又是苟且安装成功的一天…

2025-07-26 13:32:12 1064

原创 【报错】torch-geometric版本与torch版本不适配

恰好我的版本与中一样,所以直接运行其中的代码问题得到了解决。

2025-05-24 08:58:50 425

原创 机试算法附加

来确定环的大小,并更新maxlen=max(maxlen,step[u]-step[i]+1);无非是输入一个 dist[t] 还是遍历输出 dist[t] 的区别。组合中{2,3}与{3,2}是一样的。若 a[i]=a[i-1]且used[i-1]=true / false;所以可能只适合用来统计信息,如果指望按顺序输出你插入的元素,没戏。从两个数一样且挨着(预先排序)时,如[0,1,1,2,5,6]。dist 是用于存储最短距离的,dist[0]=1;看过 图 中的一条边,构成矩阵g[N][N];

2025-05-19 11:52:28 918

原创 【鱼书入门】第2~4章

np.dot() 运算会根据矩阵的维度和广播机制处理形状不完全匹配的情况,只要满足矩阵乘法的条件(即。

2025-05-17 16:07:16 983

原创 【入门】虚拟环境下Pytorch安装+PyTorch_Geometric安装(Windows)

② 查看显示适配器:在设备管理器中,展开“显示适配器”或“图形处理器”部分,查看是否有NVIDIA显卡的列表。如果有NVIDIA显卡,那么您的计算机适合安装PyTorch的GPU版本。安装顺序:先安装torch_cluster、torch_scatter、torch_sparse三个小部件,再安装torch_geometric。说明具有NVIDIA显卡,可以安装GPU版本的Pytorch。PyTorch_Geometric不能直接安装,需安装四个包。,然后选择**“设备管理器”**。

2025-05-14 04:53:44 440

原创 【入门】vscode配置Git

(踩到的笨蛋bug是git版本下载错了,下成了ARM64setup版本。导致安装出现一些错误安装不上)其中包括国外版(github)+国内版(gittee)文字教程涉及的内容会更加丰富一些,绝佳好文!,因为需要删除一些注册表文件再重新安装。就可以拉取项目到本地了。,在vscode中使用。根据文字教程中配置好。

2025-05-10 22:44:10 710

原创 机器学习初步了解

归一化(Normalization)是数据预处理中的一种常见技术,它的主要目的是通过缩放特征或标签,使得数据的。Naive Bayes 是一种基于贝叶斯定理的分类算法,其基本假设是特征之间条件独立。标准化(Standardization)是一种常见的数据预处理方法,它通过调整数据的。,使得特征数据更加适合某些机器学习模型的训练。f1-score: F1得分,精确率和召回率的。weighted avg: 每个类别的指标的。macro avg: 每个类别的指标的。,权重为每个类别的支持度。

2025-03-08 12:25:58 729

原创 day11.数学知识

(虽然二者的时间复杂度看似都是o(sqrt(n)),前者一定会循环sqrt(n)次,但后者不一定sqrt(n)次。

2025-03-07 11:00:33 849

原创 day10.最小生成树+二分图

一般是从一个中求出一颗最小生成树,此时这颗树要满足的是所以边的权重相加是。

2025-02-12 22:00:24 671

原创 day09.最短路问题

最短路问题重点是如何将原问题抽象成最短路,如何定义点和边,难点是建图朴素版的djistra与边数无关,适合稠密图。

2025-02-11 18:40:53 640

原创 day08.搜索与图论--1(bfs+dfs+拓扑)

是给每一个结点都开一个单链表,每个单链表存的就是这个点可以走到哪些点。若一个图中有n个结点,则邻接表中就有。无论是深度优先遍历还是广度优先遍历,每个结点都只会遍历一遍,所以在实现时,会开一个。,g[a][b]存储的是a —> b的信息,若边有权重,则g[a][b]存的就是。代码中坐标用(x,y)表示,x为行,y为列。对图而言,无向图又可以表示为a—>b,b—>a均可达的有向图。,因为每个位置都有两种情况,总共有 n^2 个位置。子树节点数目①用于寻找最大res;若没有权重,g[a][b]存的就是一个。

2025-02-10 21:31:54 1696

原创 day07.数据结构--3(哈希表+stl库)

哈希前缀。关键在于公式。①初始化;②计算子串哈希值。

2025-02-09 14:58:30 459

原创 day06.数据结构--2(trie+并查集+堆)

字典树(insert / query),关键在于遍历字符串。并查集 (寻根 / 合并)堆。(映射—处理位置—size–,再up、down)up / down;涉及第k个插入的值时,无需建堆引入heap_swap;注意将第k个插入的值映射到堆中再操作。

2025-02-08 20:39:32 1946

原创 day05.数据结构--1(链表+栈+队列+kmp)

单链表,增删初始化。双链表无head,默认左端为0,右端为1。最左侧为r[0],最右侧为l[1],调用时注意。由于0和1已有含义,那么第一个插入的结点的序号为2,第k个插入的结点序号为k+1。单调栈求前一个or后一个更大值/更小值。单调队列求区间内最值。kmp注意for循环。

2025-02-08 13:28:12 2205

原创 day04.双指针+位运算+离散化+区间合并

双指针算法的核心是将O(n^2)的算法优化到O(n)。① 遍历② 更新3.题目(1)将一串英文字符按单词分隔开,单词间以空格分割。如:输出: abc dfg输出:abcdfg(2)799.最长连续不重复子序列二、位运算1.思想&&模板求n的第k位数字: n >> k & 1返回n的最后一位1:lowbit(n) = n & -n2.题目(801.二进制中1d个数)三、离散化若有一个数组范围很大,但元素很少,在保证相对位置不变的前提下,则可以将其下标映射到

2025-02-06 23:34:57 916

原创 day03.前缀和+差分

1.涉及区间边界。一维前缀:s[r] - s[l - 1];二维前缀:s[x2][y2] - s[x2][y1 - 1] - s[x1 - 1][y2] + s[x1 - 1][y1 - 1];一维差分:diff[l] = diff[l] + c,;二维差分:S[x1, y1] += c, S[x2 + 1, y1] -= c, S[x1, y2 + 1] -= c, S[x2 + 1, y2 + 1] += c。

2025-01-10 02:21:35 948

原创 day02.高精度运算

本质是通过 式子 更新 t,由 t 知C,由 t 更新 t。加法:t = Ai+ Bi+ t;减法:t = Ai- Bi- t;乘法:t = Ai* b + t;除法:r = r * 10 + Ai;加法 与 乘法 注意处理最高位的进位减法 与 除法 注意处理前置0除法 注意翻转,且使用reverse需在#include < algorithm >下进行。

2025-01-09 18:18:52 887

原创 day01.快排+归并+二分

①快排 与 归并 的实现思想有相似之处,三步走。②整数二分与平常理解的二分查找(分三类)实现有差别,注意理解。整数二分的两种模板按需使用。③浮点数二分通过确定误差实现精度要求。

2025-01-08 18:59:17 702 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除