1、初识并发编程
1.1、串行,并行,并发
串行(serial):一个cpu上按顺序完成多个任务;
并行(parallelism):任务数小于或等于cup核数,多个任务是同时执行的;
并发(concurrency):一个CPU采用时间片管理方式,交替的处理多个任务。一般是任务数多余cpu核数,通过操作系统的各种任务调度算法,实现用多个任务一起执行(实际上总有一些任务不在执行,因为切换任务的速度相当快,看上去一起执行而已)。
1.2、进程,线程,协程
通过案例了解概念:
进程:我的工厂有一条生产线,这条生产线就是一个进程。
线程:在我工厂的一条生产线上,我安排了五名工人在生产线上工作,五名工人就是五个线程。
一条生产线上有多名工人就是单进程多线程。
多个生产线上有多名工人就是多进程多线程。
协程:作为一个资本家,我看到工人在生产任务较轻的时候休息是不能接受的,于是我规定当生产线没有任务时,就去帮工厂打扫卫生,即如果一个线程等待某些条件,可以充分利用这个时间去做其它事情,这就是协程。
进程,线程和协程的总结:
①、线程是程序执行的最小单位,而进程是操作系统分配资源的最小单位;
②、一个进程由一个或多个线程组成,线程是一个进程中代码的不同执行路线;
③、进程之间相互独立,但同一进程下的各个线程之间共享程序的内存空间(包括代码段、数据集、堆等)及一些进程级的资源(如打开文件和信号),某进程内的线程在其它进程不可见;
④、调度和切换:线程上下文切换比进程上下文切换要快得多;
⑤、进程(Process):拥有自己独立的堆和栈,既不共享堆,也不共享栈,进程由操作系统调度;进程切换需要的资源很最大,效率低(是一个具有一定独立功能的程序关于某个数据集合的一次运行活动);
⑥、线程(Thread):拥有自己独立的栈和共享的堆,共享堆,不共享栈,标准线程由操作系统调度;线程切换需要的资源一般,效率一般(线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位);
⑦、协程coroutine):拥有自己独立的栈和共享的堆,共享堆,不共享栈,协程由程序员在协程的代码里显示调度;协程切换任务资源很小,效率高(协程是一种在线程中,比线程更加轻量级的存在,由程序员自己写程序来管理。)。
1.3、同步,异步
概述:同步和异步强调的是消息通信机制 (synchronous communication/ asynchronous communication)。
同步:A调用B,等待B返回结果后,A继续执行。
异步:A调用B,A继续执行,不等待B返回结果;B有结果了,通知A,A再做处理。
2、线程(Thread)
特点:
①、是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位;
②、线程是程序执行的最小单位,而进程是操作系统分配资源的最小单位;
③、一个进程由一个或多个线程组成,线程是一个进程中代码的不同执行路线;
④、拥有自己独立的栈和共享的堆,共享堆,不共享栈,标准线程由操作系统调度;
⑤、调度和切换:线程上下文切换比进程上下文切换要快得多。
概述:Python的标准库提供了两个模块:_thread和threading,_thread是低级模块,threading是高级模块(threading是对_thread的封装),大多数情况下,我们只需要使用threading这个高级模块。
线程的创建方式:
①、方法包装
②、类包装
提示:线程的执行统一通过start()方法。
2.1、通过方法包装创建线程
概述:
①、通过方法包装创建线程时,线程通过Thread()方法进行创建,Thread()方法有两个参数,参数1为target,表示线程开启后执行哪个方法(方法不要带小括号,带小括号表示运行(或者说叫调用)某个函数,不带小括号表示存储了某个函数的地址),参数2为args,表示执行target指定的函数时传入的参数(args的类型是元组)。
②、线程通过start()方法开启,只创建线程而不开启线程,线程是不会运行的。
实操:通过方法包装的方式创建两个线程,线程开启后都打印信息(为了让程序慢速运行,引入sleep()函数),通过实例观察多个线程间是如何运行的。
from threading import Thread
from time import sleep
# 线程触发后运行的函数
def fun1(name):
print(f"线程{name},start")
for i in range(5):
print(f"线程{name}正在打印")
# 降低程序运行的速度
sleep(1)
print(f"线程{name},end")
# 程序的入口
if __name__ == '__main__':
print("主线程,start")
# 创建线程,target表示线程开启后执行哪个方法,args表示执行方法传入的参数(args的类型是元组)
t1 = Thread(target=fun1,args=("t1",))
t2 = Thread(target=fun1,args=("t2",))
# 启动线程
t1.start()
t2.start()
print("主线程,end")
运行结果如下:
案例总结:①、主线程,线程t1,线程t2这三个线程是相互独立的,即使主线程结束其他线程仍然能继续运行。
②、由于只有一个cpu来处理,所以不同的线程要抢夺同一个打印流进行打印,导致打印顺序较乱。
2.2、类包装创建线程
概述:类包装创建线程指创建一个实例对象,实例对象对应的类继承了Thread,线程运行后执行指定类中的run函数(这里是对父类run函数的重写),指定类中的构造方法还要调用Thread的构造方法,调用指定函数进行线程创建时,参数的个数取决于指定类中__init__除self外参数的个数。
from threading import Thread
from time import sleep
# 传入的参数一定是Thread
class myThread(Thread):
def __init__(self,name):
# 调用Thread的构造方法
Thread.__init__(self)
self.name = name
# 函数名不能修改,这是对原有实例方法进行重写
def run(self):
print(f"线程{self.name},start")
for i in range(5):
print(f"线程{self.name}正在打印")
# 降低程序运行的速度
sleep(1)
print(f"线程{self.name},end")
if __name__ == '__main__':
print("主线程,start")
# 创建线程
t1 = myThread("t1")
t2 = myThread("t2")
# 启动线程
t1.start()
t2.start()
print("主线程,end")
运行结果如下:
2.3、join()和守护线程
2.3.1、join()
概述:在前面的实操中可以发现,主线程,t1线程和t2线程都作为独立线程,主线程提前结束也不会影响其他线程的运行,但是如果现在有需求让主线程等待其他线程结束后再结束主线程,此时就可以用到join()方法。
实操:创建两个线程,分别为t3和t4,指定主线程要等待t3进程结束再结束主线程。
from threading import Thread
from time import sleep
def fun2(name):
for i in range(3):
print(f"{name}线程start")
sleep(1)
print(f"{name}线程end")
if __name__ == '__main__':
print("主线程开启")
# 创建线程(创建线程时不要省略参数的指定,不如会报错)
t3 = Thread(target=fun2,args=("t3",))
t4 = Thread(target=fun2,args=("t4",))
# 开启线程
t3.start()
t4.start()
# 指定主线程在特定线程结束后结束
t3.join()
print("主线程结束")
运行结果如下(为了突出运行结果,这里我选了一个极端的结果,由于t3和t4运行的是同样的程序,运行速度完成看两个线程谁抢打印流抢得快,t4有时会在t3结束前结束)
2.3.2、守护线程
概述:有一种线程叫守护线程,主要的特征是它的生命周期随着主线程的死亡而死亡(由于这种特征导致守护线程一般都是为主线程服务)。在python中,线程通过setDaemon(Tr