使用neural_network_console训练模型并导出.nnb文件应用于索尼spresense

一.创建数据集

首先你需要一个csv标记的数据集
在这里插入图片描述
然后我们使用neural_network_console将数据集进行处理
dataset->create dataset->image
在这里插入图片描述
用户可以通过该界面选择源目录(Source Dir),输出目录(Output Dir),并设定一些其他选项来生成适合机器学习模型使用的数据集。具体来说,用户可以选择不同的塑造模式(Shaping Mode):•Trimming:裁剪图像,使其大小符合指定的宽度和高度。•Padding:填充图像,使图像的大小达到指定的宽度和高度。•Resize:调整图像的大小至指定的宽度和高度。用户还可以选择输出图像的颜色通道数(Output Color Ch),默认为单色(Monochrome)。用户还可以设置输出图像的宽度和高度(Output Width/Height),这里被设置为28像素。用户还可以勾选“Shuffle the order of the data”来打乱数据集的顺序,这样可以避免模型过早收敛。

二.训练模型

在这里插入图片描述
这是一个基本的分类模型
模型结构由输入层(Input)、图像增强层(ImageAugmentation)、随机偏移层(RandomShift)、卷积层(Convolution)、最大池化层(MaxPooling)、tanh激活层(Tanh)、仿射层(Affine)、Sigmoid激活层(Sigmoid)和二元交叉熵损失层(BinaryCrossEntropy)组成。这个模型也可能是用于图像分类,但由于卷积层的存在,它更适合处理二维图像数据。
在这里插入图片描述
我们点击dataset来设置数据集点击url来导入数据集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我把把C

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值