根据H在有限域GF(2^m)上求解生成矩阵G

 注:如果校验矩阵H不满秩(特指行满秩),请参考:根据非满秩校验矩阵H在GF(2^m)上求解生成矩阵G

原理

有时间再补充。

注1:使用高斯消去法。如果Py不为单位阵,则说明进行了列置换,此时G不是系统形式。

注2:校验矩阵H必须是行满秩才存在对应的生成矩阵G,且生成矩阵G通常不唯一。

注3:有限域的运算是基于多项式取模运算,和普通的模q加法与模q乘法不一样!

为了区分两种变换,分别使用matlab实现。

模q乘法下的H求解G:方法一

只做列置换,不做行置换

function [G, Px, Py] = Gaussian_Elimination_in_GFq(H, q)
    
    % initial
    [m, n] = size(H);
    H_stair = mod(H,q);
    Px = eye(m); 
    Py = eye(n);
    
    for i=1:m
        for j=i:n
            if gcd(H_stair(i,j), q) == 1
                break;
            else
                if j==n
                    error('Gaussian_Elimination_in_GFq: The H is not full rank in mod(%d).',q);
                else
                    continue;
                end
            end
        end

        if j ~= i
            H_stair(:, [i, j]) = H_stair(:, [j, i]);
            Py(:, [i, j]) = Py(:, [j, i]);
        end
    end
    
    for i=1:m
        [~, x, ~] = gcd(H_stair(i,i), q);
        inv_i = mod(x, q);

        H_stair(i, :) = mod(inv_i * H_stair(i, :), q);
        Px(i, :) = mod(inv_i * Px(i, :), q);

        for j=1:m
            if j~=i && H_stair(j,i)~=0
                factor=H_stair(j, i);
                H_stair(j, :) = mod(H_stair(j, :) - factor * H_stair(i, :), q);
                Px(j, :) = mod(Px(j, :) - factor * Px(i, :), q);
            end
        end
    end

    parity_matrix = mod((q-1).*H_stair(:,m+1:n),q);
    G_fixed=[parity_matrix',eye(n-m)];
    G=G_fixed*Py';
end

模q乘法下的H求解G:方法二

先做行置换,若无逆元,再做列置换

function [G, Px, Py] = Gaussian_Elimination_in_GFq(H, q)
    
    [m, n] = size(H);
    H_stair = mod(H,q);
    Px = eye(m); 
    Py = eye(n);
    
    %% column find
    for j=1:m
        for i=j:m
            if gcd(H_stair(i,j), q) == 1
                break;
            else
                if i==m
                    %% row find
                    for k=j+1:n
                        if gcd(H_stair(j,k), q) == 1
                            break;
                        else
                        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值