lung X-ray 识别,基于CNN

本文由kaggle上的代码而来,基于CNN实现了肺部数据集的识别。

什么是CNN,其实你并不需要知道它的层逻辑是什么,你只需要知道,它可以用于

图像识别、目标检测、图像生成等问题。

说到这里,大家做这些项目为什么老是动不了手,还有就是动手了没效果,大家一定要尝试换一个方向,不能死磕。就算是别人的代码,你也是需要考虑一些问题的,否则,你自己在怎么做,也没有效果,会对自己产生怀疑。所以要尽量避免这个。

一,首先将一下环境的问题,你要知道python是编译器,而像其他的什么pycharm,vs code,jupyter都是依附与python存在的,python才是他们的底层。

所以在配置环境上,你需要找到适合自己的电脑的python,一般都是用镜像安装,因为官方网站在国外,所以下载起来,超级慢,这里附上国内镜像python的网址。

Index of python-local (huaweicloud.com)

认准下面这个,别下载了盗版。

选择适合的版本号,然后再次点击。 

然后需要查看自己的电脑是x64,还是32位的,网上可以搜到,这里就不赘述的。

LUNG--PET-CT-DX是一个数据集,该数据集包含有关肺部PET-CT图像的信息。根据引用的描述,Lung-PET-CT-Dx数据集来自TCIA,TCIA是一个医学影像公开数据库,专注于肿瘤研究。您可以在TCIA的官方网站上浏览和访问该数据集。通过引用中的代码,您可以使用提供的URL来获取LUNG-PET-CT-DX数据集中CT和PETCT图像的像素矩阵,并查看它们的形状。请注意,为了下载Lung-PET-CT-Dx数据集中的图像文件,您可能需要使用NBIA Data Retriever软件,这是TCIA网站提供的下载工具。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象](https://blog.csdn.net/takedachia/article/details/130244689)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [玩转肺癌目标检测数据集Lung-PET-CT-Dx ——①从TCIA获取影像数据集](https://blog.csdn.net/takedachia/article/details/129840078)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值