自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(161)
  • 收藏
  • 关注

原创 Linux进阶命令详解

本文针对Linux系统管理员和运维工程师,总结了生产环境高级运维的核心技能点。文章从系统监控、网络诊断、存储管理、自动化运维、安全审计、性能调优、容器支持、硬件诊断到日志分析等9个维度,提供了50+个实用命令和配置示例,包括atop高级监控、tcpdump抓包分析、LVM动态扩容、eBPF性能追踪等深度技术。重点强调了从操作系统原理理解到自动化体系构建的系统化运维方法论,以及安全优先的运维思维,为Linux专家成长提供了清晰的技术路径和实用的工具指南。

2025-08-06 20:06:57 1008

原创 Linux基础命令详解手册

《Linux命令行简明手册》精选核心运维命令,涵盖文件操作(cd/ls/cp)、权限管理(chmod/chown)、系统监控(top/df)、网络工具(ping/ssh)及文本处理(grep/sed/awk)。重点标注危险操作(如rm -rf)和高频参数组合,特别推荐管道符|与重定向>的进阶用法。手册按功能模块分类,包含apt/yum等主流包管理器对比,每个命令均附实用示例。建议新手从基础文件操作入手,逐步掌握组合命令技巧,强调使用man命令查阅手册的安全意识。

2025-08-06 20:02:58 589

原创 Swift 难点深度剖析:优雅表象下的复杂性探索

Swift 的难点并非其设计的缺陷,而是其追求强大表达力、安全性和性能所必须付出的代价。可选类型的谨慎、泛型协议的抽象、值引用类型的交织、ARC 的隐形规则、协议扩展的微妙派发,以及底层Unsafe世界的危险与力量,共同构成了 Swift 语言深邃而迷人的另一面。克服这些难点没有捷径,唯有持续的学习、实践、调试与思考。每一次对编译器错误的解读,每一次对内存泄漏的追踪,每一次对复杂泛型签名的梳理,都是开发者向 Swift 大师境界迈进的坚实步伐。

2025-07-23 19:56:30 771

原创 泰迪杯特等奖案例深度解析:基于时空图卷积网络的城市排水系统水位精准重建与异常检测系统(技术详解)

针对城市排水系统(UDN)监测数据稀疏(覆盖率<1.5%)、异常响应延迟等问题,本文提出基于多模态时空图卷积网络(ST-GCN)的智能运维方案。通过融合水位、降雨、管网拓扑等多源数据,结合Chebyshev谱图卷积和空洞时间卷积,实现未观测节点水位重建(MAE<0.05m)和实时异常检测(F1-score>85%)。关键技术包括:PTPv2硬件同步(<1μs误差)、动态时间规整优化(计算效率提升300%)、TensorRT边缘部署(推理延迟<50ms)。

2025-06-05 09:54:54 585

原创 泰迪杯特等奖案例深度解析:基于量子启发优化与多尺度时空建模的港口物流智能调度系统

全球贸易量年增长5.2%的背景下,港口物流效率成为供应链核心瓶颈。需融合AIS船舶轨迹(1Hz)、RTG传感器(10Hz)、天气预警(API)等异构数据。1000+岸桥/场桥/集卡的实时调度涉及解空间达 $10^{2500}$ 量级。突发天气(风速>15m/s)导致设备停机,需在30秒内重建调度方案。创新调度算法保障<10ms端到端延迟。自适应决策模型降低响应延迟84%Unity3D实现毫米级运动仿真。实现2000+变量级实时优化。数学表达:多目标优化问题。碰撞预测准确率99.2%

2025-06-04 19:58:25 1042

原创 泰迪杯特等奖案例深度解析:基于多模态点云融合与域自适应的电力设备缺陷检测系统设计

本文提出了一种多模态融合的电力设备缺陷检测方法,针对传统检测面临的数据同步、小样本学习和边缘计算三大挑战。通过PTPv2协议实现激光点云与红外热成像的硬件级同步,采用动态图卷积网络(DGCNN)和跨模态注意力机制处理异构数据,结合Focal Loss和MMD域对齐损失解决样本不均衡问题。在Jetson AGX Orin边缘设备上,通过TensorRT优化实现30ms内完成推理,模型精度(mAP)提升至92%以上,跨设备泛化性能提升67%。工程部署采用MQTT分布式架构,支持联邦学习实现模型持续优化。

2025-05-28 20:22:25 680

原创 泰迪杯特等奖案例深度解析:基于联邦时空图卷积网络的跨区域碳排放协同预测与优化系统

本文提出一种基于联邦时空图卷积网络(Fed-STGCN)的工业园区碳排放智能监测方案。针对碳排放数据孤岛、时空动态建模复杂和边缘计算资源受限等痛点,系统构建了多模态感知网络与工业级数据库,采用动态加权联邦学习实现跨园区隐私保护协同建模,创新设计了分层图卷积架构捕获设备拓扑关系与突变事件特征。实验表明,该方案在5类工业园区的碳排放估算误差<3%,异常检测响应延迟<3秒,模型体积压缩88%。实际部署中实现年减碳150万吨,碳交易成本降低7800万元,为碳中和目标提供了可落地的智能化解决方案。

2025-05-27 20:12:50 1000

原创 泰迪杯特等奖案例深度解析:基于多模态时空图神经网络的工业园区碳排放实时监测与优化系统

本文提出一种基于多模态时空图神经网络(MM-STGNN)的工业园区碳排放智能监测方案。针对工业场景中多源数据融合困难、动态过程建模复杂和边缘计算资源受限三大挑战,构建了包含红外热像、气体浓度、电力参数的多模态感知网络,通过时空数据对齐与物理约束增强特征工程。

2025-05-27 17:19:25 830

原创 泰迪杯特等奖案例深度解析:基于联邦学习与时空Transformer的农业气象灾害跨区域协同预警系统

本文提出一种基于联邦时空Transformer的农业气象灾害预警系统,旨在解决传统预警模型数据孤岛、时空依赖性不足及边缘计算资源受限等问题。通过多源数据融合、联邦学习架构和轻量化部署方案,该系统实现了跨区域协同预警,模型准确率达94.8%,干旱预警提前量提升至14天,减少农业损失约8.7亿元/年。

2025-05-27 15:30:33 962

原创 泰迪杯特等奖案例深度解析:基于三维点云与深度学习的复杂零件装配质量检测系统设计

需同步处理三维点云(密度>10万点/零件)、RGB图像(500万像素)、扭矩传感器数据(采样率1kHz),多源数据时间对齐误差需<2ms。高精度装配场景下缺陷样本稀缺(良品率>99.9%),单个缺陷类别样本量<50,导致模型过拟合,跨产线泛化F1-score下降超25%。激光扫描仪:Creaform HandySCAN 3D,精度±0.025mm,采样率480,000点/秒,用于获取高密度点云。扭矩传感器:HBM T40B,量程0-50Nm,精度±0.1%,监测螺栓拧紧过程。

2025-05-26 20:12:35 758

原创 泰迪杯特等奖案例深度解析:基于层次化难样本挖掘与域自适应的工业过程故障诊断系统

本文提出了一种基于改进深度信念网络(SmdaNet)的工业故障诊断解决方案。针对工业场景中难样本识别(如偏差仅5%的早期故障)、跨工况泛化性差(设备升级后准确率骤降28%)和实时性要求(<100ms延迟)等核心痛点,通过层次化难样本挖掘(HSM)实现边界案例识别率提升15.2%,结合域自适应技术使模型在新传感器场景下F1-score仅下降2.3%。

2025-05-26 16:08:57 1000

原创 泰迪杯特等奖案例深度解析:基于多模态文本挖掘的智慧政务留言分析与热点预警系统设计

每条留言需3分钟分类(含阅读、标注、分发),日均处理量仅2000条。使用PaddleOCR提取图片文字(平均准确率92.3%):30%的答复使用固定话术(如"已转交相关部门处理")

2025-05-19 09:45:29 980

原创 泰迪杯特等奖案例深度解析:基于多模态融合与小样本学习的工业产品表面缺陷智能检测系统

第九届泰迪杯数据挖掘挑战赛特等奖案例聚焦于工业质检领域,针对3C电子和汽车零部件等高端制造中的表面缺陷检测问题,提出了一套创新的多模态小样本学习框架。该案例通过融合2D高光图像和3D点云数据,解决了小样本学习、多模态数据融合、实时性要求和复杂背景干扰等核心挑战。技术方案包括双流特征提取网络、小样本学习策略、模型压缩与加速等,最终实现了缺陷检测准确率超过95%、新缺陷类型识别率超过85%、检测速度小于0.5秒/件的目标。实际应用中,该方案显著降低了漏检率,年节约质量成本超1500万元。

2025-05-16 20:30:07 1058

原创 泰迪杯特等奖案例深度解析:基于多级二值化与CNN回归的车牌识别系统设计

本文详细拆解了第八届泰迪杯数据挖掘挑战赛特等奖案例,聚焦于智慧交通与无感支付场景中的车牌识别技术。传统车牌识别系统在复杂光照、污损车牌、多角度倾斜等场景下存在显著缺陷,导致支付延迟和运营效率下降。案例通过多源数据融合、改进MSER算法、CNN回归精定位与字符分割等核心技术,构建了多场景训练集,并采用多阶段训练策略和模型压缩与加速技术,最终实现了高准确率和低延迟的车牌识别系统。实验结果表明,该方案在识别准确率、平均延迟和模型大小等方面均优于现有方法,显著提升了智慧油站的支付成功率和处理效率。

2025-05-16 20:10:34 910

原创 泰迪杯特等奖案例深度解析:基于MSER-CNN的商品图片字符检测与识别系统设计

第四届泰迪杯数据挖掘挑战赛特等奖案例聚焦于电商平台商品图片中的促销文字检测与识别,旨在解决传统人工审核效率低、漏检率高的问题。案例通过构建高质量训练集,采用MSER-CNN融合架构进行字符检测与识别,并优化模型训练与部署策略。关键技术包括多尺度极值区域提取、轻量化CRNN字符识别网络、两阶段训练策略及INT8量化与加速部署。系统在边缘端与云端协同工作,显著提升了检测与识别的准确率和响应速度。

2025-05-16 19:51:09 1125

原创 泰迪杯特等奖案例学习资料:基于卷积神经网络与集成学习的网络问政平台留言文本挖掘与分析

本案例通过层次化模型设计与集成学习优化,实现了政务文本处理效能的革命性提升。层次化注意力机制:结合业务规则动态调整注意力权重,提升分类准确性。动态模型集成:根据实时性能调整基模型权重,适应数据分布变化。轻量化工程架构:通过知识蒸馏与分布式计算,满足高并发实时处理需求。行业启示技术赋能政务:AI技术可有效解决公共服务中的效率与公平性难题。持续迭代优化:需建立数据闭环系统,持续收集反馈数据优化模型。

2025-05-06 14:53:13 780

原创 泰迪杯特等奖案例学习资料:基于多模态时空图卷积网络的工业安全预警系统设计

每个设备或监控点作为一个节点,属性包含设备类型、坐标、历史状态。

2025-05-04 00:18:04 1101

原创 泰迪杯特等奖案例学习资料:基于时空图卷积网络的城市排水系统水位精准重建与异常检测

拓扑增强的时空建模:融合管网连接度先验知识,提升稀疏数据下的重建精度。边缘智能架构:通过PMTS策略与轻量化部署,实现毫秒级响应。跨域迁移能力:在MVD数据集上迁移误差仅8.7%,显著优于传统水力模型(23.5%)。四、应用价值与拓展方向。

2025-05-03 23:34:48 997 1

原创 泰迪杯特等奖案例学习资料:基于时空图卷积网络的结构健康监测数据异常识别系统

(第十四届泰迪杯数据挖掘挑战赛A题特等奖案例解析)在桥梁、大坝、超高层建筑等基础设施的结构健康监测(SHM)中,传感器网络(如加速度计、应变计、倾角仪)持续采集多维数据以评估结构安全性。传统方法面临以下挑战:异常模式复杂:传感器故障:如温漂(温度变化导致零点偏移)、电磁干扰(EMI)、信号线接触不良等,占异常事件的60%。结构损伤:如混凝土裂缝扩展、钢索疲劳断裂等,其早期信号微弱(如0.01mm级位移变化),易被噪声掩盖。数据时空关联性:传播延迟:桥梁某点振动传递至相邻传感器需数毫秒,需精准对齐时空特征。模

2025-05-02 18:28:43 707

原创 泰迪杯特等奖案例学习资料:基于时空图卷积网络的物流车辆路径动态优化系统

(第十五届泰迪杯数据挖掘挑战赛B题特等奖案例解析)在智慧物流领域,车辆路径规划(Vehicle Routing Problem, VRP)直接影响运输成本与时效性。传统路径优化面临以下难题:动态扰动频繁:实时路况变化:交通事故、天气突变(如暴雨、大雾)导致路段通行时间波动,静态规划方案失效。例如,某城市早高峰期间,30%的主干道平均车速下降40%。订单动态插入:电商平台“即时达”服务要求系统在5分钟内响应新订单,传统重调度耗时超30分钟。多目标冲突:成本与时效矛盾:最短路径可能绕开高速公路(节省里程但增加时

2025-05-02 17:32:16 834

原创 泰迪杯特等奖案例学习资料:基于边缘计算与多模态融合的温室传感器故障自诊断系统设计

2024年3月,系统检测到某温室湿度传感器漂移(上报值稳定在65%,实际值波动于58-72%),触发告警并切换至备用传感器,避免过度灌溉导致的根系腐烂。传感器类型多样:模拟信号(4-20mA电流环)、数字信号(I2C、SPI)、图像流(RGB-D相机)。采样频率差异大:温度(0.1Hz)、光照(1Hz)、CO₂(10Hz)、图像(30fps)。环境数据:温度、湿度、光照、CO₂浓度,采样频率0.1-10Hz,总计1.2亿条记录。图像数据:RGB-D图像,分辨率1280×720,30fps,总计15万帧。

2025-05-02 16:27:36 1176

原创 泰迪杯特等奖案例学习资料:基于CLIP模型微调与知识蒸馏的多模态图文检索系统设计

在社交媒体(如微博、抖音)、电商平台(如淘宝、京东)及数字图书馆等场景中,用户对图像与文本的跨模态检索需求日益增长。:图像的低级视觉特征(如颜色、纹理)与文本的高级语义难以直接对齐,例如“红色连衣裙”可能对应多种视觉形态(长款、短款、蕾丝材质)。:图像数据维度高(如224×224×3),文本数据为离散符号序列,两者特征空间差异显著。:随机裁剪(保留率≥80%)、水平翻转(p=0.5)、旋转(-15°~15°)。:梯度裁剪(max_norm=1.0),降低学习率(降至1e-5)。

2025-05-02 16:02:44 868

原创 泰迪杯特等奖案例学习资料:基于多模态特征融合的图像文本检索系统设计

异构特征动态对齐:通过跨模态注意力机制实现图像与文本的细粒度语义匹配。轻量化联合训练:结合知识蒸馏与量化技术,在边缘设备上实现高效检索。数据增强策略:采用文本替换(如“红色→玫红”)与图像旋转(±15°)提升模型鲁棒性。四、应用价值与拓展方向电商平台:提升“以图搜货”与“文本推荐商品”的精准度,促进转化率增长。社交媒体:增强内容推荐系统的多模态理解能力,优化用户体验。扩展方向支持视频-文本跨模态检索,动态捕捉时序特征。结合知识图谱,实现语义推理与上下文感知检索。五、实践指南与代码示例。

2025-05-02 15:51:04 762

原创 泰迪杯特等奖案例学习资料:基于多模态数据融合与边缘计算的工业设备健康监测与预测性维护系统

多模态时空融合架构:通过跨模态注意力机制实现振动、温度、电流数据的动态加权融合。边缘-云协同推理:本地完成实时故障检测,云端执行RUL预测与模型迭代更新。小样本元学习:基于Prototypical Networks解决稀有故障模式识别难题。四、应用价值与拓展方向工业4.0:应用于数控机床、风电设备、轨道交通等场景,实现预测性维护。能源管理:结合设备健康状态优化能耗策略,降低单位产值能耗15%。扩展应用迁移至医疗设备(如MRI机组)状态监测。结合数字孪生技术,构建虚拟调试与故障模拟平台。

2025-04-30 14:31:04 1385

原创 泰迪杯特等奖案例学习资料:基于多模态融合与边缘计算的智能温室环境调控系统

多模态时空特征融合:结合环境时序数据与冠层空间结构,突破单一传感器局限性37。混合动作空间强化学习:离散-连续动作联合优化,平衡调控精度与设备损耗。边缘智能动态卸载:基于网络状态的实时任务分配算法,保证低延迟与高可靠性9。四、应用价值与拓展方向农业智能化:适用于连栋温室、植物工厂等场景,实现番茄、黄瓜等高附加值作物精准管理。能源互联网:与光伏发电系统联动,在电价谷段预储能,进一步降低能耗成本4。扩展应用集成害虫识别模块(YOLOv5迁移),实现环境-虫害联合调控8。

2025-04-30 14:20:10 930

原创 泰迪杯实战案例超深度解析:非侵入式电力负荷检测与分解系统设计

非侵入式负荷检测(Non-Intrusive Load Monitoring, NILM)通过在电网入口处安装单一传感器,分析总电流或总功率信号,分解出各设备的用电行为。:分离数据采集(1秒)、预处理(120ms)、推理(350ms)、后处理(30ms),总延迟<500ms8。:关键参数设置(初始温度1000,冷却速率0.95,马尔可夫链长度100),避免局部最优8。:设备启停事件稀疏,低功耗设备(如手机充电器)特征易被高功耗设备(如空调)掩盖。:0-1规划与决策树协同推理,解决多设备并发问题8。

2025-04-30 10:22:06 814 1

原创 泰迪杯实战案例超深度解析:特殊医学用途配方食品数据分析与智能推荐系统设计

PDF中的表格常因分页导致结构断裂。:利用PDFMiner分析页面布局,识别文本块和图像块的位置坐标。:构建双语词典映射(如“Protein”→“蛋白质”)。:本案例完整实现涉及15000+行代码,已开源至。基于图神经网络:在知识图谱上执行节点分类。的Scattergl替代Scatter。:相比REST API提升3倍吞吐量。:PDF解析+知识图谱构建+动态对齐。验证逻辑:检查每行单元格数一致性。:规则引擎+协同过滤+大模型增强。:微服务架构+实时监控+性能优化。后处理阶段根据坐标重建表格结构。

2025-04-28 10:36:05 899

原创 泰迪杯实战案例超深度解析:基于YOLOv5的农田害虫图像识别系统设计

使用初始模型在无标注图像上推理,保留置信度0.1~0.3的预测框作为困难负样本。:高频害虫(如褐飞虱)样本量>200,稀有类(如稻水象甲)仅1-5张。:利用大规模数据集(ImageNet)的通用特征,避免小样本过拟合。计算标注框长宽比异常值(昆虫通常1:1~1:3),标记离群样本。:浅层特征包含细节信息,但YOLOv5深层会丢失小目标特征。对每个GT框,选择k个候选anchor(IoU前10%)。针对小目标优化:限制拼接图中昆虫数量≤8,避免过度拥挤。其中II为原图,LL为光照分量,RR为反射分量。

2025-04-27 18:04:18 700

原创 泰迪杯实战案例超深度解析:运输车辆安全驾驶行为分析与安全评价系统设计

在道路运输行业,不良驾驶行为(如急加速、急减速、疲劳驾驶)是引发交通事故的主要诱因,占事故总量的70%以上。,推荐结合《Python数据挖掘:入门、进阶与实用案例分析》第11章“交通大数据应用”进行扩展学习。练习GeoPandas空间计算:计算轨迹曲率、急转弯检测。:GPS漂移点干扰路线分析,急变速行为需精准识别。构建驾驶行为知识图谱:Neo4j存储规则与历史事件。:需综合安全、效率、能耗构建多目标评价体系。:融合路侧单元(RSU)数据提升检测精度。:平衡安全、效率、能耗的帕累托前沿分析。

2025-04-27 15:59:47 1186

原创 泰迪杯实战案例超深度解析:基于多源数据的信用风险评估与反欺诈检测

中小微企业贷款违约率高达8%,传统评分卡模型AUC仅0.72。征信报告(人行、百融):200+字段,含历史借贷、还款记录等。:本文涉及的完整代码、Docker部署文件及仿真数据已开源至。:新型跨平台欺诈占比35%,传统规则引擎漏检率超40%。用户:"最近资金周转困难,能否延期还款?:多任务学习、图神经网络、异常检测的融合架构。:实时推理、可解释性、隐私保护的工程实现。交易流水:每秒处理10万+条记录,含。客服:"请提供近三月银行流水...":多源异构数据的融合与特征工程方法论。:欺诈样本占比仅0.3%。

2025-04-27 15:43:39 842

原创 泰迪杯实战案例超深度解析:旅游景点游客流量预测与资源优化

清洗逻辑:剔除停留时间超过24小时的异常记录(可能为员工卡)。时间滑动窗口:24小时历史数据(15分钟粒度,共96时间步)。:节假日热门景点游客密度超过10人/㎡,排队时间长达2小时。运行轻量模型:TensorRT加速的TFLite模型。特征维度:8维(客流量、温度、降雨量、舆情得分等)。:将DeepSTN++压缩为1/4大小的学生模型。空间维度:30个关键区域(景点+交通节点)。主任务:各区域未来3天客流量(MSE损失)。模型训练:分布式训练DeepSTN++。辅助任务:区域拥堵概率(交叉熵损失)。

2025-04-27 14:22:19 927

原创 泰迪杯实战案例学习资料:城市交通流量预测与信号灯优化控制

其中 Pf=A/rowsum(A)Pf​=A/rowsum(A), Pb=AT/rowsum(AT)Pb​=AT/rowsum(AT)min⁡∑i=1N(α⋅等待时间i+β⋅停车次数i)min∑i=1N​(α⋅等待时间i​+β⋅停车次数i​)全系统集成:部署模型至边缘计算设备(如Jetson Xavier),实现端到端实时控制。路网拓扑特征:基于图神经网络(GNN)提取路口影响力(PageRank值)。:交通流量具有时空传播特性(如上游拥堵扩散至下游)。:天气(降雨量、能见度)、节假日标记、道路施工信息。

2025-04-27 11:41:02 704

原创 泰迪杯实战案例学习资料:电商用户行为分析与个性化推荐系统设计

在电商场景中,用户行为数据(点击、加购、下单)的深度挖掘是提升转化率的核心。:训练需32GB内存 + GPU(如RTX 3090),推理可使用CPU集群。:为不同用户生成Top-N商品推荐列表,要求点击率(CTR)提升20%以上。:利用类目相似性进行流量扶持(“同类目老商品”的受众用户优先曝光)。:多路召回(协同过滤+热门商品+类目偏好)→ 生成1000候选集。:需兼顾平台GMV(成交总额)与用户体验(推荐多样性)。:长尾商品(80%商品点击量<10次)难以建模。

2025-04-27 10:34:12 1284

原创 泰迪杯实战案例学习资料:基于穿戴装备的身体活动监测与健康预警系统设计

随着可穿戴设备的普及(如智能手环、智能手表),如何从加速度计数据中挖掘用户行为特征,已成为健康管理领域的关键问题。本案例基于穿戴设备采集的。:根据代谢当量(MET值)划分用户活动类型(如睡眠、久坐、运动),并统计各类型时长8。:按国际标准划分活动等级(如MET<1.0为睡眠,MET≥6.0为高强度运动)8。:三轴加速度数据(采样频率50Hz)、MET值标签、用户属性(性别、年龄)。:通过聚类算法划分夜间睡眠状态(深度睡眠、浅睡眠、觉醒)8。:NVIDIA GPU(训练阶段)、树莓派4B(部署阶段)。

2025-04-27 10:04:29 648

原创 泰迪杯实战案例学习资料:生产线的故障自动识别和人员配置优化

toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_schedule, n=10) # 10个任务。model.add(Dense(1, activation='linear')) # 回归任务,预测故障倒计时(小时)特征维度(feature_dim):10(温度、振动、电流等原始特征+衍生特征)。实时监测设备状态,预测故障类型(如机械磨损、电路故障)及发生时间(精确到小时)。

2025-04-26 22:58:10 994

原创 WebUI可视化:第7章:系统优化与部署实战

demo.queue(concurrency_count=5) # 控制并发数。prevent_thread_lock=True, # 防止界面冻结。share=False # 关闭临时分享链接。:使用自动扩展组(Auto Scaling)能否独立完成Docker镜像的构建与推送?:选择计算优化型实例(如AWS C5):选择内存优化型实例(如AWS R5)# 示例:Gradio异步处理。使用Spot实例(适合可中断任务)# 防止敏感文件泄露。# 限制文件上传大小。使用预留实例(比按需便宜40%)

2025-04-25 21:45:01 924

原创 WebUI可视化:第6章:项目实战:智能问答系统开发

model = AutoModel.from_pretrained(...).float() # 使用CPU。outputs=gr.Textbox(label="最近10条记录")msg = gr.Textbox(label="输入问题")clear = gr.Button("清空历史")).half().cuda() # GPU加速。gr.Button("查看历史").click(gr.Button("提交评分").click(gr.Markdown("# 智能问答系统")

2025-04-25 21:43:09 779

原创 WebUI可视化:第5章:WebUI高级功能开发

✅ 掌握复杂交互逻辑的实现✅ 学会自定义界面样式与布局✅ 实现安全高效的文件处理✅ 优化性能与用户体验。

2025-04-25 21:08:13 1070

原创 WebUI可视化:第4章:Streamlit数据可视化实战

python<style></style>4.6 状态管理与缓存。

2025-04-25 21:06:58 952

原创 WebUI可视化:第3章:Gradio入门实战

在launch()中添加主题:python))或直接注入CSS:pythoncss = """important;"""3.5 事件处理机制。

2025-04-25 21:05:06 1033

所有奥运奖牌得主(1896-2024)-数据集

关于数据集 奥运奖牌获得者数据集 (1896–2024) 该存储库包含奥运会奖牌获得者(夏季奥运会和冬奥会)的结构化数据,跨越一个多世纪,从 1896 年的第一届现代奥运会到 2024 年的最新奥运会。 列描述 该文件包含以下列: 列 描述 season 奥运赛季:或"Summer""Winter" year 奥运会举办的那一年 medal 授予的奖牌:、或"Gold""Silver""Bronze" country_code 3 个字母的国际奥委会国家代码(例如,、、USAJPNFRA) country 官方记录中的国家名称 athletes 获得奖牌的运动员姓名,如果多个,则用逗号分隔 games 奥运会版的正式全称(例如2024 Paris) sport 运动类别(例如田径、游泳、花样滑冰) event_gender 活动的性别类别(例如,、、MenWomenMixed) event_name 事件的具体名称(例如, ,100mIce Hockey)

2025-07-28

美国经济生命体征:25年宏观数据

关于数据集 该数据集提供了过去 25 年(大约 1998 年至 2023 年)美国关键宏观经济指标的全面集合。它包括以下方面的每月数据: M2 货币供应量 (M2SL):广泛的流通货币衡量标准,包括现金、支票存款和易于兑换的近货币。 联邦基金有效利率 (FEDFUNDS):存款机构隔夜相互交易联邦基金的利率。 利率:与经济分析相关的各种基准利率。 10年期国债固定期限利率(GS10):反映市场对长期利率和经济增长的预期。 所有数据均来自美联储经济数据 (FRED) 数据库,并在适用的情况下进行季节性调整。 该数据集非常适合与宏观经济变量相关的经济研究、金融建模、市场预测和机器学习应用。数据经过清理、合并和格式化以供立即使用,并按每月频率对齐带有日期戳的条目。

2025-07-28

电子商务假冒产品数据集

关于数据集 概述 该合成数据集专门设计用于支持假冒产品检测和反欺诈系统中的机器学习研究和开发。该数据集模仿电子商务平台中的真实世界模式,同时不包含实际的敏感或专有信息,使其成为教育目的、算法开发和公共研究的理想选择。 主要功能和数据点 产品级功能 基本产品信息: 产品编号、类别、品牌名称和定价 六大类:电子、时尚、化妆品、医药、奢侈品、汽车零部件 逼真的品牌变体,包括假冒产品中常见的细微拼写错误 卖家特点: 卖家评分(1.0-5.0 分),假冒商品通常显示较低的评分 评论数量从 0 到 10,000 不等,合法卖家的评论更多 地理信息,包括卖家国家/地区和发货地 质量指标: 商品图片数量(假冒商品通常较少) 产品描述长度(假冒产品通常具有较短、不太详细的描述) 拼写错误在商品信息中占有统计 认证徽章和保修信息 卖家网站的域名年龄 运营指标: 运输时间范围(假冒产品通常交货时间较长) 付款方式种类(合法卖家提供更多选择) 退货政策的明确性和联系信息的完整性 产品浏览量、购买量和愿望清单添加 事务级功能 交易详情: 唯一交易和客户标识符 跨越一年活动的交易日期 客户人口统计和购买历史记录 具有现实市场范围的数量和定价信息 付款和运输: 付款方式包括信用卡、PayPal、加密货币和电汇 运输速度和成本 折扣模式和促销活动 风险指标: 异常购买模式的交易速度标志 客户和付款信息之间的地理位置不匹配 针对新客户和回头客的设备指纹分析 批量订单模式和退款请求频率 主要应用 用于检测假冒产品的训练分类模型 为电子商务平台开发欺诈检测算法 消费者保护和市场安全方面的学术研究 为在线市场构建风险评估系统 数据科学和机器学习方面的教育项目

2025-07-28

入侵检测日志(正常、机器人、扫描)-数据集

关于数据集 该数据集包含模拟一周内正常和恶意活动的真实合成网络日志。 它包括两个版本: 时间序列版本(带时间戳):非常适合顺序建模、入侵跟踪和时态异常检测。 非时序版本(无时间戳):适用于标准分类或异常检测流水线。 启示: 现实世界的网络入侵日志通常是私有的或受限的。该合成数据集为研究人员、学生和机器学习工程师提供了一种现实且易于访问的替代方案,以构建和基准测试入侵检测系统。

2025-07-28

员工薪资预测数据-数据集

关于数据集 员工薪资数据集 这是为教育和机器学习目的而生成的合成数据集。它专为薪资预测作为回归问题而设计,包括现实的员工属性,这些属性在教育水平、职位、经验和薪资等特征之间具有逻辑一致的关系。 数据集摘要 行数:10,000 目标变量:或根据您的选择使用列Salary 用例:回归、EDA、特征工程、模型评估、公平性分析 特征 列 类型 描述 Employee_ID 整数 每个员工的唯一标识符 Name 字符串 全名(性别感知生成) Gender 分类 男性或女性 Age 整数 员工年龄(基于教育水平和职位) Education_Level 分类 其中之一:高中、学士、硕士、博士 Experience_Years 整数 专业经验年限 Department 分类 业务部门,例如人力资源、工程、营销等。 Job_Title 分类 员工的角色,例如分析师、工程师、经理等。 Location 分类 工作地点(例如,纽约、旧金山等) Salary 整数 美元年薪(回归目标) 特性 所有条目都是完整的,没有缺失值。 数据反映了现实的相关性: 高等教育→更高的工作级别→更高的薪水 实习生年轻,工资低 博士年龄较大,担任高级职位 不同部门和地点的薪资分配各不相同。 应用 该数据集非常适合: 线性和非线性回归模型 功能重要性和工程 分类编码技术 超参数调优 公平和偏见检测(例如,基于性别的工资差距) 可视化和EDA实践

2025-07-28

DTDC 快递数据-数据集

关于数据集 DTDC 快递数据集 从印度各地的 DTDC 运营中提取的真实快递运输数据集。该数据集捕获包裹物流的端到端流程,涵盖发件人/收件人详细信息、重量、递送方式、费用和状态,使其成为分析、机器学习和物流研究的宝贵资源。 数据集概述 每行代表通过 DTDC 预订的快递托运,包括以下详细信息: 取货和送货地点(城市、密码、州) 货件重量(实际、体积、收费) 交付方式和关税明细 签名、时间戳和 GST 详细信息(如适用) 包裹性质:文件或非文件 示例用例 路线优化 交货时间预测 关税建模 最后一英里交付分析 快递需求的地理空间热图 按列模式(描述) 起源:包裹最初预订或发送的城市。 目的地:包裹打算投递的城市。 袋号:用于对物流中的货件进行分组的唯一内部标识符(通常是 UUID)。 日期:预订装运的日期,以 Excel 序列号格式表示。 发件人姓名:发送包裹的个人或公司的全名。 发件人电话:发件人的手机或固定电话联系电话。 发件人地址:寄件人的完整地址,以便取件和记录。 发件人城市:发件人的城市可以重复“原产地”字段。 发件人状态:发件人所在的印度州。 发件人密码:发件人所在地的 6 位邮政编码 (ZIP)。 发件人 GSTIN:发件人的 GST 识别号(如果适用于商业货件)。 总件数:托运中包含的单个实物包裹的数量。 实际重量:包裹的实际实际重量(以公斤为单位)。 体积重量:根据体积尺寸计算的重量,用于计费目的。 可充电重量:用于计费的重量 - 通常为实际重量或体积重量中的较大者。 文书工作:指示文件是否与包裹一起提交(是/否)。 发件人签名:表示发件人是否签署了派单文档(是/否)。 发件人日期:发件人完成交接或签名文档的日期,采用 Excel 序列格式。 收件人姓名:接收包裹的个人或组织的全名。 收件人电话:目标收件人的联系电话。 收件人地址:包裹应发送的完整送货地

2025-07-28

探索心理健康数据-数据集

关于数据集 该数据集呈现了心理健康调查回复的综合且高度逼真的表示,使用在原始抑郁症调查/分析数据集上训练的深度学习生成模型精心制作。它是游乐场系列 - 第 4 季第 11 集比赛的基础。 该数据集旨在模拟复杂的心理健康评估模式,同时保持参与者的匿名性,邀请人们探索心理数据建模、道德人工智能应用和现代分类技术。 数据集文件 train.csv:包含具有二进制目标变量类的匿名调查要素,标记为: e:一类心理健康概况 p:另一个类(故意混淆标签以促进无偏见的建模) test.csv:包含与训练集相同的特征,不包括目标。用于预测。 问题陈述 该任务是一个二元分类问题 - 根据从训练数据中学习的模式预测每个测试实例的目标类(或 )。ep 虽然该数据集本身并不难建模,但它为以下实验提供了肥沃的土壤: 特征工程 模型可解释性 先进的合奏技术 合成数据与原始数据性能基准测试 为什么这个数据集很重要 隐私保护:该数据集通过利用生成式深度学习模型避免敏感内容,确保数据隐私,同时保留信息结构。 研究友好:能够安全地探索心理健康数据,而不会损害真实的受访者信息。 可视化就绪:丰富多样的功能集使其成为实践 EDA、相关分析和功能重要性评分的理想选择。 开放用于跨数据集扩充:我们鼓励您使用原始的抑郁症调查数据集来进行比较见解或迁移学习应用程序。 建议的用例 使用 SHAP、LIME 或特征排列技术构建可解释模型 尝试经典方法(逻辑回归、SVM)与现代方法(XGBoost、CatBoost、TabNet) 运行 AutoML 试验以对开箱即用的解决方案进行基准测试 练习构建完整的 ML 管道 - 从预处理和验证到调整和部署

2025-07-28

2025 年 AI 与人类内容检测 1000+ 记录-数据集

关于数据集 AI 与人类内容检测数据集文档 概述 该合成数据集包含标记用于 AI 与人类内容检测的文本样本,并从每个文本样本中提取全面的语言和风格特征。该数据集专为机器学习分类任务而设计,以区分人工智能生成的内容和人类编写的内容。 总功能:17 列 目标变量:(1 = 人工智能生成,0 = 人工编写)label 数据集大小:具有不同内容类型的大量文本样本集合 用例:用于 AI 内容检测的二元分类 色谱柱规格 列名称 数据类型 描述 样本值 笔记 text_content 字符串 正在分析的实际文本内容 “对每个原因进行评分。贯穿始终的质量......“,”登上它的岩石。工作工人......” 主要功能 - 原始文本数据 content_type 字符串 文本内容的类别/类型 academic_paper、论文、creative_writing、news_article、blog_post、social_media、文章、product_review 具有 8 种不同类型的分类特征 word_count 整数 文本中的总字数 288, 253, 420, 196 范围从小型社交媒体帖子到较长的文章 character_count 整数 包括空格在内的字符总数 1927, 1719, 2849, 1310 与word_count相关性强 sentence_count 整数 文本中的句子数 54, 45, 75, 34 用于计算平均句长 lexical_diversity 浮 唯一字数与总字数的比率 0.9514, 0.9723, 0.9071, 0.9592 范围 0-1,更高 = 词汇更多样化 avg_sentence_length 浮 每句话的平均字数 5.33, 5.62, 5.6, 5.76 按word_count/sentence_count计算

2025-07-28

时间序列供应链数据集(不同地点每日交货的订单、件数和收入 )

关于数据集 该数据集包含多个不同地点的多个客户的 5 年模拟交付数据。该数据集的目的是通过包括季节性、需求高峰和节假日关闭来模拟现实世界的交付模式。该数据集非常适合任何尝试练习时间序列预测、需求计划或供应链分析的人。

2025-07-28

全球自由职业者(原始)数据集

关于数据集 描述: 该数据集包含来自世界各地的 1,000 个虚构的自由职业者个人资料,旨在反映现实世界数据收集中经常遇到的现实可变性和混乱性。 每个条目都包含人口统计、专业和平台相关信息,例如: 姓名、性别、年龄和国家 主要技能和多年经验 小时费率(混合格式)、客户评分和满意度分数 使用的语言(基于国家/地区) 多个领域的不一致和不干净的值(例如,性别、is_active、满意度) 主要特点 : 使用 Faker 的男性/女性名字生成器的基于性别的名字 真实的年龄和经验分布(有缺失值和嘈杂值) 使用实际语言数据映射的国家/地区-语言对 格式混乱:混合数据类型、缺失值、大小写不一致 完全使用 faker 库在 Python 中生成,不使用真实数据 使用案例: 练习数据清理和预处理 执行 EDA(探索性数据分析) 开发数据管道:原始→干净→模型就绪 教授特征工程和处理真实世界的脏数据 数据验证、异常值检测和格式标准化练习

2025-07-28

印度政府的 NIRF 印度大学排名

关于数据集 NIRF 印度 2024 年大学排名 该数据集包含 2024 年的官方大学排名,由印度政府教育部下属的国家机构排名框架 (NIRF) 发布。 它包括基于各种绩效指标(例如教学、学习和资源、研究和专业实践、毕业成果、外展和包容性以及认知)的印度顶尖大学排名。

2025-07-28

【蓝桥杯竞赛】动态规划与LED矩阵控制优化:从省赛淘汰到国赛一等奖的技术突破与经验总结了蓝桥杯

内容概要:本文深入解析了蓝桥杯竞赛中软件类和电子类两大高频难题的破解方法,重点探讨了动态规划的状态压缩优化和LED矩阵低刷新率引发的鬼影问题解决方案。对于软件类,文章分析了动态规划(DP)中常见的内存爆栈问题,通过引入滚动数组和质数筛预存,将内存消耗从900KB压缩至4KB,并显著提升计算效率。对于电子类,文章剖析了STM32驱动LED矩阵时的硬件时序冲突问题,通过SPI+DMA零CPU占用传输、双缓冲机制和PWM精密控制,将刷新率从87Hz提升至1260Hz,完全消除颜色残留。此外,还介绍了超声波测距中的温漂问题及其补偿模型,以及浮点数精度陷阱的应对策略。 适合人群:参加蓝桥杯竞赛的大学生及对嵌入式系统和算法优化感兴趣的开发者。 使用场景及目标:①掌握动态规划的状态压缩技巧,解决内存超限问题;②优化LED矩阵驱动程序,提高刷新率并消除鬼影;③应对评测机与本地环境差异引发的精度问题,确保比赛成绩稳定;④学习超声波测距的温度补偿方法,提高测量精度。 阅读建议:本文不仅提供了具体的代码实现,还详细解释了每一步优化背后的原理和思路。建议读者在学习过程中结合实际项目进行实践,特别是在竞赛准备阶段,可以通过复现文中提到的代码模板和信号分析图谱来加深理解。同时,注意积累通用的优化技巧和赛场应急处理经验。

2025-07-24

【大学生创新创业】国家级大创项目核心难点解析与突围策略:从申报到落地的全维度解决方案大学生创新创业训练计划

内容概要:文章聚焦三个国家级大学生创新创业训练计划项目(智慧农业、非遗数字化、社区养老机器人),深度剖析了从立项申报到成果转化过程中遇到的技术研发瓶颈、成本控制压力、文化认同构建、跨学科协作低效等典型瓶颈,并提供了具体的突围策略。对于智慧农业项目,通过采用军工级密封工艺、自研LoRa中继网络拓扑算法等解决了传感器失效率高、无线传输距离不足等问题;非遗数字化项目通过邀请传承人担任艺术总监、开发“风格解耦编码器”等解决了文化权威质疑和技术伦理争议;社区养老机器人项目则通过采用基于模型的系统工程协调不同专业团队需求,剥离医药相关功能以应对医疗合规性问题。; 适合人群:正在准备或参与大创项目的大学生及其指导教师,尤其是对工科技术、文科社科、跨学科综合项目感兴趣的团队。; 使用场景及目标:①帮助项目团队理解并解决立项申报、技术研发、成果转化中的常见问题;②提供低成本验证MVP、政策资源利用、风险防范的具体方法;③促进跨学科协作,提高项目的实际落地可能性。; 其他说明:文章强调,大创项目的成功不仅依赖于技术创新,还需要关注成本控制、文化认同、系统整合等方面,最终实现从“纸面优秀”到“推动改变”的转变。建议读者结合自身项目特点,灵活运用文中提供的策略和工具。

2025-07-24

【计算机二级考试】Office高级应用与Python编程核心考点解析及备考策略:实战案例详解与2025年考试趋势分析

内容概要:本文通过8大实战案例,深度解析计算机二级MS Office和Python科目的高频考点,涵盖Word长文档排版、Excel函数建模、PPT动画制作及Python算法实现,提供2025年最新备考策略。文章详细介绍了Office权重调整、Python难度升级以及操作题评分细化的新变化,并通过具体案例展示了各部分的考点和操作步骤。此外,还提供了选择题高分突破技巧、模拟考试与提分策略,以及推荐了备考资源。 适合人群:准备参加2025年计算机二级考试的考生,尤其是需要强化Office高级应用和Python编程技能的学生或从业人员。 使用场景及目标:①帮助考生掌握Word、Excel、PPT的具体操作技巧,如格式规范排版、数据透视表创建、高阶动画制作等;②提高Python编程能力,包括数据处理、算法实现等;③熟悉考试环境和评分标准,进行有效的时间管理和错题分析,确保备考效率。 阅读建议:考生应结合实际操作练习,逐步掌握各个模块的核心技能,同时关注考试趋势和评分标准的变化,合理安排备考时间和资源,充分利用提供的模拟环境和练习平台进行强化训练。

2025-07-24

【智能车竞赛】毫米波雷达跳变干扰下的越野避障突围:多传感器融合与低算力实时控制优化方案解析

内容概要:本文以全国大学生智能车竞赛中获得一等奖的智能越野车项目“磐石-3”为例,深入解析了越野车在非结构化道路、动态障碍物和传感器干扰等复杂环境下的关键技术解决方案。文章聚焦三大核心难点:多传感器时空同步、非结构化道路动态避障、低算力嵌入式实时控制。针对毫米波雷达在复杂环境中的误触发问题,提出三级滤波架构;针对动态障碍物导致的路径规划失效,采用动态Hybrid A*优化方案;针对低算力平台的实时控制问题,通过多种优化手段提高系统响应速度和稳定性。此外,文章还介绍了硬件成本压缩60%的具体措施,并提供了关键代码和仿真模型。; 适合人群:对自动驾驶、机器人技术感兴趣的高校学生、科研人员以及相关领域的工程师。; 使用场景及目标:①学习如何在复杂环境下实现多传感器融合与时空同步;②掌握动态路径规划算法及其优化方法;③了解低算力平台下的实时控制技术和硬件成本优化策略。; 其他说明:本文不仅提供理论分析和技术方案,还附有大量实测数据、代码片段和仿真模型,便于读者理解和实践。建议读者结合实际应用场景,深入研究提供的代码和技术细节,以更好地掌握智能车开发的核心技术。

2025-07-24

ACM竞赛经典题目解题策略与优化技巧深度解析:八数码问题、区间覆盖、最小生成树变体

内容概要:本文深入解析了ACM竞赛中三个经典案例(八数码问题、区间覆盖问题、最小生成树变体),探讨其核心难点、解题策略及优化技巧。八数码问题通过状态空间优化、A*搜索和双向BFS等方法解决搜索效率问题;区间覆盖问题展示了贪心算法的应用,强调了排序选择和边界处理的重要性;最小生成树变体则引入了二分答案和MST算法结合的方法,处理双目标优化问题。文章还总结了ACM竞赛中的通用优化与调试技巧,包括复杂度估算、数据结构选择、空间换时间和常数优化等。 适合人群:准备参加ACM竞赛的大学生和编程爱好者,尤其是已经具备一定算法基础并希望提升解题能力的选手。 使用场景及目标:①帮助选手理解经典问题的核心难点和解决方案;②提高选手在搜索、贪心、图论等常见算法领域的应用能力;③掌握ACM竞赛中常见的优化与调试技巧,提升实战水平。 阅读建议:本文内容详实,涉及较多具体算法和技术细节,建议读者结合实际编程练习,逐步理解和掌握各个案例的解题思路与优化方法。同时,注重通用技巧的学习,以便灵活应对不同类型的竞赛题目。

2025-07-24

【电子设计竞赛】2025电赛十大技术痛点解析与实战解决方案:从电磁兼容到多机通信的工程技术优化

内容概要:本文结合2024年全国电子设计竞赛(电赛)真题案例,深入剖析了电赛中常见的十大技术痛点,并提供了详细的工程解决方案。文章通过具体案例详细讲解了高频电路噪声抑制、实时控制抖动、多机协同冲突、电源完整性、电磁兼容、控制算法优化、多传感器融合、低功耗设计、热设计以及竞赛调试技巧等方面的问题。每个案例不仅包含理论分析,还提供了实际的代码片段和测试数据对比,确保方案的可操作性和有效性。 适合人群:具备一定电子设计基础,特别是参与电子设计竞赛或从事相关工作的工程师和技术人员。 使用场景及目标:①帮助参赛选手提前熟悉并解决电赛中可能出现的技术难题;②为工程师提供实际项目中遇到类似问题时的参考解决方案;③通过具体案例和代码片段,提升读者对电子设计的理解和实际操作能力。 其他说明:文章强调了设计即调试、冗余设计和文档管理的重要性,提出了电赛成功的三大铁律。同时,提供了必备测试工具的推荐和故障诊断速查表,帮助读者更好地进行项目调试和问题排查。此外,文中还包含了丰富的图表和代码示例,便于读者理解和实践。

2025-07-24

电子竞赛2025电赛四阶段训练体系与核心技能突破:AIoT融合及多学科交叉训练指南

内容概要:本文档《2025电赛全攻略:四阶段系统训练与核心技能突破》详细规划了针对2025年电子设计竞赛的准备方案,涵盖从基础强化到创新冲刺的四个主要阶段。首先分析了2025年竞赛的新趋势,如AIoT融合、实时性要求、能源效率指标和多学科交叉等。接着,文档分别介绍了各阶段的重点训练内容,包括电路设计、嵌入式编程、运动控制、无线通信、机器视觉等方面的具体技术和实现方法。最后,通过2023年和2024年赛题的复现,以及前沿技术的融合,帮助参赛者掌握最新的技术和应对策略。 适合人群:准备参加2025年全国大学生电子设计竞赛的学生团队,尤其是那些希望在竞赛中取得优异成绩并希望深入学习相关技术的学生。 使用场景及目标:①理解并掌握最新的竞赛规则和技术要求;②通过具体的训练项目和实例操作,提升电路设计、嵌入式编程、运动控制、无线通信、机器视觉等方面的能力;③学习如何将不同领域的知识和技术进行有效融合,以解决复杂的工程问题。 其他说明:文档不仅提供了详细的理论讲解和技术指导,还强调了实际操作的重要性,鼓励学生在实践中不断改进和完善自己的作品。此外,文档还提供了一些实用的竞赛文档撰写技巧,如系统框图绘制、测试数据分析和算法伪代码规范等,帮助参赛者更好地呈现他们的成果。

2025-07-24

智能医疗基于U-Net++的肺部CT影像分割与三维重建系统:毕业设计实战及临床应用优化基于U-Net

内容概要:本文介绍了一个基于U-Net++的肺部CT影像分割与三维重建系统的智能医疗毕业设计项目。该项目旨在解决医学影像诊断中的痛点,如人工阅片耗时、漏诊率高以及二维断层限制等问题。通过多模型融合架构、迁移学习优化和轻量化部署等技术创新,实现了肺部CT影像的自动分割、特征提取及三维重建。系统采用了PyTorch、MONAI、VTK、ITK-SNAP等技术栈,实现了高效的肿瘤检测和三维可视化。实验结果显示,该系统在分割精度、重建速度和临床应用方面表现出色,显著提高了诊断效率和准确性。 适合人群:对医学影像处理、深度学习及三维重建感兴趣的本科生、研究生及医疗领域的研究人员。 使用场景及目标:①适用于医学影像处理课程的教学案例,帮助学生理解深度学习在医疗领域的应用;②为临床医生提供高效准确的辅助诊断工具,提高诊断效率和准确性;③作为科研项目的参考,推动医学影像分析技术的发展。 阅读建议:本文不仅介绍了系统的实现细节和技术选型,还提供了详细的实验结果和性能分析,建议读者结合实际应用场景进行深入学习,并关注系统在临床验证中的表现。同时,对于开发过程中遇到的问题和解决方案,也有助于读者在类似项目中避免常见错误。

2025-07-24

【PHP电商开发】基于Laravel框架的高性能RESTful API设计与实现:用户认证+商品管理+数据缓存优化

内容概要:本文档详细介绍了如何使用PHP的Laravel框架构建一个高性能电商RESTful API。项目涵盖了用户系统(注册/登录/JWT认证/权限管理)、商品管理(CRUD操作/多条件筛选/分页/缓存)和数据优化(Redis缓存热点数据/队列处理任务)等核心模块。文档不仅提供了完整的代码实现,还深入讲解了API的安全防护措施如速率限制、请求验证和SQL注入防护。通过实际案例展示了如何利用Redis进行缓存优化以及异步任务处理,并通过Postman和ApacheBench进行了性能测试,验证了缓存对性能提升的效果。最后给出了生产环境部署建议和功能扩展方向,包括集成Elasticsearch、GraphQL、分布式事务处理和API监控等。 适合人群:具备一定PHP编程基础,熟悉Laravel框架的工作1-3年开发人员。 使用场景及目标:①理解并掌握Laravel框架在电商RESTful API开发中的应用;②学习如何实现用户认证、商品管理及数据缓存优化等关键功能;③掌握API安全防护措施和技术栈的选择;④通过性能测试了解不同技术手段对系统性能的影响。 阅读建议:此资源不仅包含代码实现,更注重于技术原理的理解和最佳实践的应用。建议读者在学习过程中结合实际代码进行调试,同时参考提供的性能测试数据来加深理解。

2025-07-24

中国大气污染(2015-2025)-数据集

关于数据集 该数据集包含来自中国五个主要城市的合成但真实的空气污染数据:北京、上海、广州、成都和深圳。它跨度为 2015 年至 2025 年,提供有关空气质量、气象条件和污染水平的宝贵信息。该数据集由 3,000 行和 24 列组成,涵盖各种空气污染物、天气条件和地理细节。 该数据集专为数据分析、机器学习模型和空气质量预测应用而设计。

2025-08-05

多类糖尿病数据集-zip

关于数据集 这个精炼的数据集最初基于 Ahlam Rashid 在 Mendeley Data 中上传的“糖尿病数据集”。原始数据集的链接为:https://data.mendeley.com/datasets/wj9rwkp9c2/1。原始数据集共包含 1000 名受试者,分为三类:糖尿病、非糖尿病和预测糖尿病。 在1000名受试者中,844名是糖尿病患者,103名是非糖尿病患者,53名是预测糖尿病患者,导致阶级极度不平衡。我们在原始数据集中总共发现了 174 个重复的受试者,随后我们删除了这些受试者。删除重复受试者后,还剩下 690 名糖尿病受试者、96 名非糖尿病受试者和 40 名预测糖尿病受试者。

2025-08-05

监控中的有害和危险物体-数据集

概述 该危险物品数据集是一个全面的可视化数据集,旨在检测和分类危险物品。它最初基于 Roboflow 上的危险对象数据集,通过额外的图像、新的对象类和改进的组织进行了显着增强,以便在计算机视觉应用中实际使用。 上下文 检测危险物体和环境对于公共安全、监控、机器人和自主系统中的应用至关重要。该数据集支持开发能够实时识别风险的人工智能模型,从而实现更智能、更安全的决策。它非常适合使用 YOLO、SSD 或其他深度学习框架训练对象检测算法。 数据集详细信息 图片总数:14, 676 拆分: 训练集:12,049 张图片 验证集:1, 749 张图片 测试集:878 张图像 类别(共 7 个): 0 : 弹药 1 : 枪支 2: 手榴弹 3 : 刀 4: 手枪 5 : 火箭 6 : 火

2025-08-05

胆结石数据集 (UCI)

关于数据集 概述 临床数据集收集自安卡拉 VM 医疗园医院内科门诊,包括 319 人(2022 年 6 月至 2023 年 6 月)的数据,其中 161 人被诊断患有胆结石病。它包含 38 个特征,包括人口统计学、生物阻抗和实验室数据,并获得了安卡拉市医院伦理委员会 (E2-23-4632) 的伦理批准。人口统计变量是年龄、性别、身高、体重和体重指数。生物阻抗数据包括总水、细胞外水和细胞内水;肌肉和脂肪量;蛋白;内脏脂肪区;和肝脏脂肪。实验室特征包括葡萄糖、总胆固醇、HDL、LDL、甘油三酯、AST、ALT、ALP、肌酐、GFR、CRP、血红蛋白和维生素 D。数据集完整,没有缺失值,并且在疾病状态方面是平衡的,无需额外的预处理。它为使用非成像特征进行基于机器学习的胆结石预测提供了坚实的基础。 上下文 胆结石病是一种常见的胃肠道疾病,其特征是胆囊内形成固体颗粒(胆结石)。这些结石会导致炎症、感染和胆管阻塞等并发症。了解与胆结石形成相关的医学、人口统计和生活方式因素对于早期诊断和预防策略至关重要。 该数据集经过精心策划,旨在支持专注于胆结石风险预测和临床决策的研究、探索性数据分析 (EDA) 和机器学习任务。 数据集详细信息 大小:数据集有 319 行和 40 列。 格式:单个 CSV 文件,兼容 Python、R 和其他工具。 所有功能都是干净的,格式一致。分类特征是人类可读和编码的。

2025-08-04

全球自然灾害数据-数据集

关于数据集 该数据集源自 NASA 的 EONET API,该 API 提供全球发生的重大自然事件的实时和历史数据。它包括全球自然灾害(如野火、严重风暴、洪水等)的清理和结构化记录。该数据集具有重要的分析价值,因为它提供了对历史趋势、地理空间模式、气候变化影响和备灾策略的见解。

2025-08-04

垃圾图像数据集(2000/班)

关于数据集 该数据集包含用于垃圾分类的平衡图像集合,分为六类:塑料、金属、玻璃、纸板、纸张和垃圾,它是由一个非常大的整体制作的,以实现更好的质量、平衡和性能。 所有图像都是标准化的:大小调整为 256x256 像素,采用 RGB 格式,并清除重复项以提高质量和一致性。 该数据集包括每类约 2,300 至 2,500 张图像,使其在训练机器学习模型方面具有良好的平衡性。 它非常适合从事废物分类或环境人工智能项目的任何人,提供干净、多样化且即用型的数据。

2025-08-02

安全背心检测数据集-zip

--带注释的安全背心与无背心图像,以符合 PPE 要求 关于数据集 安全背心检测数据集是精选的真实世界图像集合,用于检测高能见度安全背心。该数据集最初来自 Roboflow Universe“安全背心”项目,旨在加速计算机视觉系统的开发,用于工业和建筑环境中的个人防护装备 (PPE) 合规性、工人安全监控和自动监控。 起源和目的 :该数据集由 Roboflow 贡献者收集和标记,为专门关注安全背心使用的物体检测研究提供了强大的基准。它支持以下应用程序: 自动现场安全合规性检查 对视频源进行实时 PPE 监控 与智能头盔或可穿戴技术系统 集成 universe.roboflow.com 数据集组成 图片总数:3,897 张高分辨率照片,其中有穿着和不穿安全背心的工人 注释:每个 person 实例周围的边界框,标记为: Safety Vest No Safety Vest 注释总数:~4,200 个框(两类) 图像环境:室内工作现场、室外施工区、不同的照明条件、遮挡和多个视点 注释格式和结构 以 YOLO v5 格式导出,数据集遵循以下文件夹布局: /images/ ├── train/ # 80% of images ├── valid/ # 10% of images └── test/ # 10% of images 您可以通过 Roboflow 的导出工具轻松转换为 COCO、Pascal VOC、TFRecord 或其他常见格式。 推荐拆分 训练:~3,118 张图片 验证:~389 张图像 测试:~390 张图像 (这些分割是通过随机 80/10/10 采样生成的,但可以根据您的实验设计进行调整。

2025-07-30

猫狗分类图片检测数据集

关于数据集 猫和狗分类数据集是一个标准的计算机视觉数据集,涉及将照片分类为包含狗或猫。该数据集作为来自大约 25,000 张的更大数据集的照片的子集提供。 该数据集包含 24,998 张图像,分为 12,499 张猫图像和 12,499 张狗图像。训练图像在猫和狗图像之间平均分配,而测试图像没有标记。这允许用户根据看不见的数据评估他们的模型。

2025-07-30

眼睛追踪检测数据集-zip

对于任何试图构建眼动追踪模型、白内障检测模型或更多模型的人! 该数据集包含人脸图像,特别关注眼睛区域。该数据集包含近 2000 张注释良好的图像,用于训练 RCNN、YOLO 等目标检测模型,用于跟踪和检测眼球内的感兴趣区域。该数据集可用于构建白内障检测模型、眼球运动跟踪模型等。使用此数据集使用和构建项目,享受乐趣! --** 注意 **--- 数据集中包含的注释格式为:class_id、x_center、y_center、宽度、高度。“YOLOv8 的标准”

2025-07-30

作物生产数据(原始 + 精制)-基于各种因素的作物生产数据进行预测

关于数据集 作物生产数据(原始 + 精炼) 该数据集包含印度不同邦作物生产数据的原始和精炼版本,这些数据集针对作物推荐、产量预测和农业洞察生成等机器学习应用进行了编译和清理。 数据集文件 Crop_recommendation.csv 原始数据集,其中包含直接来自政府数据存储库的未处理字段。 crop_Data.xslx.csv 经过清理和预处理的版本,具有标准化的作物名称、格式化的日期和处理的缺失值 - 为 ML 任务做好准备。 主要特点 温度 湿度 酸碱度 雨量 标签 Label_Num ( crop_Data.csv)

2025-07-29

中国城景点详情-数据集

关于数据集 该数据集包括来自中国 352 个城市的旅游景点数据。每个城市 CSV 文件中包含 100 个位置。数据包括位置名称、网址、地址、网站介绍、开放时间、图片网址、评分、建议访问时长、建议季节、门票信息和提示。 所有数据都是通过网络抓取从 https://travel.qunar.com/ 获取的

2025-08-05

中国水污染监测数据-数据集

关于数据集 该数据集对2023年从中国10个主要省份的各个监测站收集的水污染水平进行了合成但真实的模拟。数据包括 pH 值、浊度、化学和生物需氧量、营养水平和重金属浓度等关键参数。这些指标被环境监测机构广泛用于评估水质对生态、人类和工业的影响。 该数据集可用于: 环境建模 水质预测 分类或回归任务的监督学习 环境系统中的异常检测 数据可视化和 EDA 项目

2025-08-05

NETFLIX 电视节目和电影-数据集

关于数据集 Netflix 电影和电视节目 关于此数据集: Netflix 是最受欢迎的媒体和视频流媒体平台之一。他们的平台上有超过 8000 部电影或电视节目,截至 2021 年年中,他们在全球拥有超过 200M 订阅者。这个表格数据集包含 Netflix 上所有电影和电视节目的列表,以及演员、导演、收视率、发行年份、持续时间等详细信息。 数据集概述: Netflix Titles 数据集是 Netflix 上可用的电影和电视节目的综合汇编,涵盖影片类型、导演、演员阵容、制作国家/地区、发行年份、评级、持续时间、类型(列在中)和简要描述等各个方面。该数据集有助于分析 Netflix 内容的趋势、了解类型受欢迎程度以及检查内容在不同地区和时间段的分布情况。

2025-08-05

乳腺组织阻抗测量-数据集

关于数据集 乳腺组织数据集 该数据集包含从乳房中新鲜切除的组织样本的电阻抗测量值。数据来自 UCI 机器学习存储库。 数据集特征 类型:多变量 学科领域:健康与医学 关联任务:分类 特征类型:实数 实例:106 特点:各种阻抗测量 数据集信息 阻抗测量在以下频率下进行:15.625、31.25、62.5、125、250、500 和 1000 KHz。这些测量值在(实数、虚数)平面上绘制时,构成了计算乳腺组织特征的阻抗谱。该数据集可用于预测原始 6 类或 4 类的分类,通过合并难以区分的纤维腺瘤、乳腺病和腺体类别。 特征 I0:零频时的阻抗率(欧姆) PA500:500 KHz 时的相位角 HFS:相位角的高频斜率 DA:频谱末端之间的阻抗距离 面积:频谱下面积 A/DA:由 DA 归一化的面积 MAX IP:频谱的最大值 DR:I0与最大频点实部的距离 P:光谱曲线的长度 类别:组织类型(癌、纤维腺瘤、乳腺病、腺体、结缔、脂肪) 类 汽车:癌 时尚:纤维腺瘤 mas:乳腺病 gla:腺体 缺点:连接词 adi:脂肪 用法 该数据集适用于分类任务。阻抗测量可用于预测乳腺组织的类型。

2025-08-04

多靶点生物活性 ChEMBL

与四个不同蛋白质靶标结合的 8,711 个分子的数据集。 关于数据集 EGFR、DRD2、BACE1 和 HDAC1 的生物活性数据集 该数据集包含针对四个具有药理学重要性的蛋白质靶标测试的化合物的精选分子数据。所有数据均来自 ChEMBL 数据库。 包括的目标 目标名称 ChEMBL 目标 ID 目标类 EGFR的 CHEMBL203 激酶(受体 TK) DRD2 CHEMBL217 GPCR(多巴胺 D2 受体) BACE1 CHEMBL1987 酶(天冬氨酸蛋白酶) HDAC1 CHEMBL325 酶(组蛋白脱乙酰酶) 数据集中的每个条目包括: ChEMBL 化合物 ID 经典微笑 分子特性(分子量、HBA、HBD、logP 和 TPSA) 目标标签 格式 数据集以 CSV 或 Parquet 格式提供,其中包含以下列: ChEMBL ID:ChEMBL 化合物标识符 SMILES:规范的 SMILES 字符串 Molecular weight:分子量(Da) LogP:辛醇-水分配系数 HBA:氢键受体数 HBD:氢键供体数量 TPSA:拓扑极表面积 Protein:蛋白质靶点名称

2025-08-04

航空公司航班数据-数据集

不同城市的航空公司航班数据集 各航空公司的航班预订数据集是从著名网站以结构化格式逐年抓取的。该数据集包含印度城市之间的航班旅行详细信息记录。这里存在多种功能,如出发地和目的地城市、到达和出发时间、航班的持续时间和价格等。 此数据以 CSV 文件的形式提供。我们将使用 Pandas DataFrame 分析此数据集。 此分析将对在航空公司、旅游领域工作的人有所帮助。 使用这个数据集,我们在项目中使用 Python 回答了多个问题。 Q.1. 数据集中有哪些航空公司,并附有它们的频率? Q.2. 显示代表出发时间和到达时间的条形图。 Q.3. 显示代表源城市和目的地城市的条形图。 Q.4. 价格因航空公司而异吗? Q.5. 票价会根据出发时间和到达时间而变化吗? Q.6. 价格如何随着来源和目的地的变化而变化? Q.7. 在出发前 1 或 2 天购买机票时,价格有何影响? Q.8. 经济舱和商务舱的票价有何差异? Q.9. Vistara 航空公司从德里飞往海得拉巴的商务舱航班平均价格是多少? 这些是数据集中可用的主要特征/列: 1)航空公司:航空公司名称存储在航空公司栏中。这是一个拥有 6 家不同航空公司的分类特征。 2) 航班:航班存储有关飞机航班代码的信息。这是一个分类特征。 3)始发城市:航班起飞的城市。这是一个拥有 6 个独特城市的分类特征。 4) 出发时间:这是通过将时间段分组到箱中而获得的派生分类特征。它存储有关出发时间的信息,并具有 6 个唯一的时间标签。 5) 停靠点:具有 3 个不同值的分类特征,用于存储源城市和目的地城市之间的停靠点数量。 6) 到达时间:这是通过将时间间隔分组到箱中而创建的派生分类特征。它有六个不同的时间标签,并保留有关到达时间的信息。 7) 目的地城市:航班降落的城市。这是一个拥有 6 个独特城市

2025-08-04

骨折和健康骨骼的 X 射线图像-数据集

该数据集包含 9,300+ 张 X 射线图像,平均分为断裂和非断裂两类。 该数据集包括原始图像和增强图像。所有图像均使用高质量 LANCZOS 插值调整为 512×512 像素,以保持视觉清晰度。 数据集摘要 类 源语言 增强 总 坏 130 4,520 4,650 非断裂 290 4,360 4,650 总 420 8,880 9,300 格式:.JPG 尺寸:像素512×512 颜色:RGB 按类组织在文件夹中: Fractured/ Non-Fractured/ 使用案例 二进制图像分类 迁移学习和微调 医学影像研究 联邦学习 数据增强实验 学术项目/论文

2025-07-30

就业市场和失业趋势数据集

有关失业、职位发布、技能和劳动力人口统计的数据。 该数据集全面概述了 2019 年至 2023 年多个地区的就业市场动态和失业趋势。它包括有关失业率、活跃职位发布数量以及每个地区最热门技能的月度数据。此外,该数据集还捕获了劳动力人口统计数据,例如失业工人的平均年龄和教育水平,以及再培训计划需求的指标。 该数据集旨在支持分析和建模任务,例如预测失业热点、识别技能差距以及推荐有针对性的再培训或技能提升计划。它为旨在了解和解决区域就业挑战的劳工经济学家、政策制定者、劳动力发展机构和数据科学家提供了宝贵的资源。

2025-07-29

腾讯股票数据2025-数据集

市值 Market capitalization of Tencent (TCEHY) Market cap: $641.59 Billion USD 截至 2025 年 7 月,腾讯的市值为 6415.9 亿美元。根据我们的数据,这使腾讯成为全球市值排名第 17 位的最有价值公司。市值,通常称为市值,是上市公司流通股的总市值,通常用于衡量公司的价值。 收入 Revenue for Tencent (TCEHY) Revenue in 2022: $82.08 Billion USD 根据腾讯最新的财报,该公司目前的收入(TTM)为861.9亿美元。2022 年,该公司的收入为 820.8 亿美元,比 2021 年的 867.8 亿美元有所下降。收入是公司通过销售商品或服务产生的收入总额。与收益不同,不会减去任何费用。 收益 Earnings for Tencent (TCEHY) Earnings in 2022: $32.29 Billion USD 根据腾讯最新的财报,该公司目前的收益为861.9亿美元。2022 年,该公司的收益为 322.9 亿美元,低于 2021 年的 397.3 亿美元。此页面上显示的收益是公司的税前收入。 根据不同来源的日终市值 2025年7月23日,据报道,腾讯的市值为: 6383.2 亿美元(按公司计)市值 内容 地理:中国 时间段:2010年1月-2025年7月 分析单位:腾讯股票数据2025 变量 变量 描述 日期 日期 打开 开盘价。 高 当天的最高价格。 低 当天的最低价格。 关闭 收盘价,根据拆分进行调整。 adj_close 调整所有适用的拆分和股息分配后的收盘价。数据使用适当的分割乘数和股息乘数进行调整,并遵守证券价格研究中心 (CRSP) 标准。 卷 当天交易的股票数量。

2025-07-29

土耳其超级联赛球员薪水(2024/2025)

关于数据集 您可以从中查看到土耳其超级联赛中2024-2025赛季的球员薪资信息。一对一数据在数据分析、数据编辑、数据可视化等领域发挥作用。

2025-07-29

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除