区间DP——石子合并

题目背景

设有 N 堆石子排成一排,其编号为 1,2,3,…,N。

每堆石子有一定的质量,可以用一个整数来描述,现在要将这 N 堆石子合并成为一堆。

每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。

例如有 4 堆石子分别为 1 3 5 2, 我们可以先合并 1、2 堆,代价为 4,得到 4 5 2, 又合并 1,2 堆,代价为 9,得到 9 2 ,再合并得到 11,总代价为 4+9+11=24;

如果第二步是先合并 2,3 堆,则代价为 7,得到 4 7,最后一次合并代价为 11,总代价为 4+7+11=22。

问题是:找出一种合理的方法,使总的代价最小,输出最小代价。

4
1 3 5 2

题目分析

我们自顶向下分析:首先我们要知道,无论我中间是怎样合并的,在最后一步的时候,一定是将两堆石子合并。并且由题目中所给的条件“每次只能合并相邻的两堆”,对于石堆序列x[1:n],我们一定存在一个i,使得x[1:i]的石堆全部在左边那一堆;x[i+1:n]的石堆全部在右边那一堆。而我们将石堆x[1:i]合并的代价加上将石堆x[i+1:n]合并的代价,再加上所有石子的重量之和,就是我们最终合并的的代价。

将石堆x[1:i]x[i+1:n]合并的代价都要最小,这是显然的,这也是该问题的最优子结构性质。这样,我们将求解合并x[1:n]石堆的最小代价的问题转化为了:求解合并x[1:i]x[i+1:n]的最小代价的两个子问题,因此我们很容易想到用二维数组f[i][j]来描述问题,即f[i][j]=c表示将石堆x[i:j]合并花费的最小代价。这样,f[1][n]=f[1][i]+f[i+1][n]+s[n]-s[0],其中s[n]-s[0]即为区间[1:n]的和。

但是我们并不知道最后一步的i在哪里,所以我需要遍历:
f[1][n]=min{f[1][i]+f[i+1][n]+s[n]-s[1]}(1≤i≤n)

因而对于每一个区间,即每一个子问题,我们都可以类似地给出递归关系:
f[i][j]=min{f[i][k]+f[k+1][j]+s[j]-s[i-1]} (i≤k<j且i≠j)

最后我们会递归到i=j,这个时候我们认为没有代价的,f[i][i+1]=s[i+1]-s[i-1],因而:
f[i][j]=0(i=j)

将①②合并起来,就是我们的递归关系式。

该问题的子问题重叠性质也是显然的。举个简单的例子来说,我们在计算f[1][i]时需要计算f[1][1:i-1],而计算f[1][i-1]时需要计算f[1][1:i-2],具有相同的子问题。

我们反思一下,为什么这里分析最优子结构性质是从最后一步入手?开始我会想从第一步开始,分析最优子结构性质,但是将2堆石子合并后,会产生新的大小的一个石堆,这并不能算作是该问题的一个子问题,长度的确减少了,但是你产生了新的数据,没有办法描述。

事实上,对于区间DP,我们都可以从最后一步入手。例如经典的矩阵连乘问题,我们也是从最后一步入手:最后一步一定是两个矩阵相乘,我们把它记为Al,Ar,A1也一定是A[1:i]连乘得到的,A2是A[i+1:n]连乘得到的,表示方法和这题就非常类似了。

代码实现

对于区间DP的代码,我们通常是三层循环:
①第一层循环定义区间的长度for(int len=2;len<=n;len++)在这个题范围是1,也就是本身我们说了不花费代价,默认是0.
②第二层循环定义区间起始位置:在我们确定了区间长度之后,我们不可以让我们的求的区间超出了[1:n]:for(int i=1;i+len-1<=n;i++).需要注意的是,区间长度为len的时候,末尾的下标是i+len-1.
③第三层循环定义区间截断的位置k:现在我们知道了我们区间左端是i,区间右端是i+len-1,现在我们就要求f[i][i+len-1].根据我们的递推关系式,i≤k<i+len-1,我们首先记l=i,r=i+len-1,这样:for(int k=l;k<r;k++) f[l][r]=min(f[l][k]+f[k+1][r]+s[r]-s[l-1])

需要注意的是,因为默认是0,如果就这样,那么最后得到的结果只会是0,所以要在进入第三层循环求最小值之前,先把其设置成比较大的数:f[l][r]=1e8

完整代码为:

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=310;
int f[N][N];
int rock[N];
int s[N];
int main(){
    int n;
    cin>>n;
    for(int i=1;i<=n;i++){
        scanf("%d",&rock[i]);
        s[i]=s[i-1]+rock[i];
    }
    for(int j=2;j<=n;j++){//区间长度
        for(int i=1;i+j-1<=n;i++){
            f[i][i+j-1]=1e8;
            for(int k=i;k<=i+j-2;k++){
                f[i][i+j-1]=min(f[i][i+j-1],f[i][k]+f[k+1][i+j-1]+s[i+j-1]-s[i-1]);
            }
        }
    }
    cout<<f[1][n];
}

感谢AcWing平台

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值