题目背景
设有 N 堆石子排成一排,其编号为 1,2,3,…,N。
每堆石子有一定的质量,可以用一个整数来描述,现在要将这 N 堆石子合并成为一堆。
每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。
例如有 4 堆石子分别为 1 3 5 2, 我们可以先合并 1、2 堆,代价为 4,得到 4 5 2, 又合并 1,2 堆,代价为 9,得到 9 2 ,再合并得到 11,总代价为 4+9+11=24;
如果第二步是先合并 2,3 堆,则代价为 7,得到 4 7,最后一次合并代价为 11,总代价为 4+7+11=22。
问题是:找出一种合理的方法,使总的代价最小,输出最小代价。
4
1 3 5 2
题目分析
我们自顶向下分析:首先我们要知道,无论我中间是怎样合并的,在最后一步的时候,一定是将两堆石子合并。并且由题目中所给的条件“每次只能合并相邻的两堆”,对于石堆序列x[1:n]
,我们一定存在一个i,使得x[1:i]
的石堆全部在左边那一堆;x[i+1:n]
的石堆全部在右边那一堆。而我们将石堆x[1:i]
合并的代价加上将石堆x[i+1:n]
合并的代价,再加上所有石子的重量之和,就是我们最终合并的的代价。
将石堆x[1:i]
,x[i+1:n]
合并的代价都要最小,这是显然的,这也是该问题的最优子结构性质。这样,我们将求解合并x[1:n]
石堆的最小代价的问题转化为了:求解合并x[1:i]
和x[i+1:n]
的最小代价的两个子问题,因此我们很容易想到用二维数组f[i][j]
来描述问题,即f[i][j]=c
表示将石堆x[i:j]
合并花费的最小代价。这样,f[1][n]=f[1][i]+f[i+1][n]+s[n]-s[0]
,其中s[n]-s[0]
即为区间[1:n]的和。
但是我们并不知道最后一步的i在哪里,所以我需要遍历:
f[1][n]=min{f[1][i]+f[i+1][n]+s[n]-s[1]}(1≤i≤n)
因而对于每一个区间,即每一个子问题,我们都可以类似地给出递归关系:
①f[i][j]=min{f[i][k]+f[k+1][j]+s[j]-s[i-1]} (i≤k<j且i≠j)
最后我们会递归到i=j
,这个时候我们认为没有代价的,f[i][i+1]=s[i+1]-s[i-1]
,因而:
②f[i][j]=0(i=j)
将①②合并起来,就是我们的递归关系式。
该问题的子问题重叠性质也是显然的。举个简单的例子来说,我们在计算f[1][i]
时需要计算f[1][1:i-1]
,而计算f[1][i-1]
时需要计算f[1][1:i-2]
,具有相同的子问题。
我们反思一下,为什么这里分析最优子结构性质是从最后一步入手?开始我会想从第一步开始,分析最优子结构性质,但是将2堆石子合并后,会产生新的大小的一个石堆,这并不能算作是该问题的一个子问题,长度的确减少了,但是你产生了新的数据,没有办法描述。
事实上,对于区间DP,我们都可以从最后一步入手。例如经典的矩阵连乘问题,我们也是从最后一步入手:最后一步一定是两个矩阵相乘,我们把它记为Al,Ar,A1也一定是A[1:i]
连乘得到的,A2是A[i+1:n]
连乘得到的,表示方法和这题就非常类似了。
代码实现
对于区间DP的代码,我们通常是三层循环:
①第一层循环定义区间的长度:for(int len=2;len<=n;len++)
在这个题范围是1,也就是本身我们说了不花费代价,默认是0.
②第二层循环定义区间起始位置:在我们确定了区间长度之后,我们不可以让我们的求的区间超出了[1:n]:for(int i=1;i+len-1<=n;i++)
.需要注意的是,区间长度为len
的时候,末尾的下标是i+len-1
.
③第三层循环定义区间截断的位置k:现在我们知道了我们区间左端是i
,区间右端是i+len-1
,现在我们就要求f[i][i+len-1]
.根据我们的递推关系式,i≤k<i+len-1
,我们首先记l=i,r=i+len-1
,这样:for(int k=l;k<r;k++) f[l][r]=min(f[l][k]+f[k+1][r]+s[r]-s[l-1])
需要注意的是,因为默认是0,如果就这样,那么最后得到的结果只会是0,所以要在进入第三层循环求最小值之前,先把其设置成比较大的数:f[l][r]=1e8
。
完整代码为:
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=310;
int f[N][N];
int rock[N];
int s[N];
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++){
scanf("%d",&rock[i]);
s[i]=s[i-1]+rock[i];
}
for(int j=2;j<=n;j++){//区间长度
for(int i=1;i+j-1<=n;i++){
f[i][i+j-1]=1e8;
for(int k=i;k<=i+j-2;k++){
f[i][i+j-1]=min(f[i][i+j-1],f[i][k]+f[k+1][i+j-1]+s[i+j-1]-s[i-1]);
}
}
}
cout<<f[1][n];
}