目录
神经网络
人工神经网络( Artificial Neural Network, 简写为ANN)也简称为神经网络(NN),是一种模仿生物神经网络结构和功能的 计算模型。人脑可以看做是一个生物神经网络,由众多的神经元连接而成。各个神经元传递复杂的电信号,树突接收到输入信号,然后对信号进行处理,通过轴突输出信号。
人工神经网络
每一个神经元都是=g(w1x1 + w2x2 + w3x3...) ,即先对输入求和,再对其激活
💎这个流程就像,来源不同树突(树突都会有不同的权重)的信息, 进行的加权计算, 输入到细胞中做加和,再通过激活函数输出细胞值。我们使用多个神经元来构建神经网络,相邻层之间的神经元相互连接,并给每一个连接分配一个强度 w,机器学习的目的就是求这些 w 值。
- 输入层: 即输入 x 的那一层
- 输出层: 即输出 y 的那一层
- 隐藏层: 输入层和输出层之间都是隐藏层
激活函数
💎激活函数用于对每层的输出数据进行变换, 进而为整个网络结构结构注入了非线性因素。此时, 神经网络就可以拟合各种曲线。如果不使用激活函数,整个网络虽然看起来复杂,其本质还相当于一种线性模型。
假设有一个单层的神经网络,其输入为𝑥x,权重为𝑤w,偏置为𝑏b,那么该层的输出𝑦y可以表示为:𝑦=𝑤⋅𝑥+𝑏y=w⋅x+b
对于多层的神经网络,如果每一层都不使用激活函数,那么无论网络有多少层,最终的输出都可以表示为输入𝑥x的一个线性组合 y=wn⋅(wn−1⋅(…(w2⋅(w1⋅x+b1)+b2)…)+bn−1)+bn
通过给网络输出增加激活函数, 实现引入非线性因素, 使得网络模型可以逼近任意函数。
激活函数能够向神经网络引入非线性因素,使得网络可以拟合各种曲线。没有激活函数时,无论神经网络有多少层,其输出都是输入的线性组合,这样的网络称为感知机,它只能解决线性可分问题,无法处理非线性问题。
增加激活函数之后, 对于线性不可分的场景,神经网络的拟合能力更强: