YOLO11改进-模块-引入动态特征融合模块DFF 增强特征融合

        在医学图像分割领域,随着深度学习技术的发展,如何有效地融合多尺度特征成为研究的关键问题之一。卷积神经网络(CNNs)和视觉 Transformer(ViTs)是两种主要的技术路线,但它们在特征融合方面都存在一定的局限性。传统的 CNNs 在利用全局上下文信息方面受限,虽然通过引入大卷积核(LKs)来扩大感受野,但在处理形状和大小差异较大的器官时,依赖单一定尺寸的大卷积核进行特征提取,难以自适应地捕获多尺度特征,且缺乏增强局部特征与全局上下文信息相互作用的机制。ViTs 虽然能够利用注意力机制获得较大的感受野并利用全局信息,但在提取局部上下文信息方面存在不足,其注意力机制主要学习低分辨率特征来建模全局依赖关系,导致特征缺乏详细的定位信息。
        在这样的背景下,为了更好地融合多尺度特征,充分利用全局信息,提高医学图像分割的性能,本文提出了动态特征融合(DFF)模块。DFF 旨在基于全局信息自适应地融合多尺度局部特征图,通过动态机制在融合过程中选择重要特征,以解决上述现有技术在特征融合方面的不足,提升模型对医学图像的分割能力。

上面是原模型,下面是改进模型

1. 动态特征融合模块DFF介绍          

      以下是关于 DDF(动态特征融合)的原理和结构的介绍:
1. 原理
        基于全局信息的自适应融合:DDF 旨在基于全局信息自适应地融合多尺度局部特征图。它通过动态机制在融合过程中选择重要特征,以解决传统方法在特征融合方面的不足,提升模型对医学图像等的处理能力。例如在医学图像分割中,不同器官的形状和大小差异较大,传统方法难以有效融合多尺度特征,而 DDF 可以根据全局信息动态地调整不同尺度特征的权重,从而更好地捕捉和利用这些特征。
2. 结构
        输入特征图:DDF 模块接收来自不同层次或不同尺度的特征图作为输入,有两个输入特征图。
        全局信息提取与处理:通过一系列操作提取全局信息并进行处理,以生成用于指导特征融合的权重。例如,利用平均池化(AVGPool)、卷积(Conv)和 Sigmoid 激活函数等操作,生成空间权重和通道权重。
        特征融合:将输入特征图与生成的权重进行元素级乘法(Element-wise Multiplication)等操作,实现特征的动态融合。例如,通过将不同尺度的特征图与对应的权重相乘,再进行相加(Element-wise Addition)等操作,得到融合后的特征图。

2. YOLOv11与动态特征融合模块DFF的结合

       可以在YOLOv11原有特征拼接和这个相结合。

3. DFF代码部分

YOLOv8_improve/YOLOv11.md at master · tgf123/YOLOv8_improve · GitHub

视频讲解:YOLOv11模型改进讲解,教您如何修改YOLOv11_哔哩哔哩_bilibili

YOLOv11模型改进讲解,教您如何根据自己的数据集选择最优的模块提升精度_哔哩哔哩_bilibili

YOLOv11全部代码,现有几十种改进机制。

 4. 将DFF引入到YOLOv11中

第一: 将下面的核心代码复制到D:\model\yolov11\ultralytics\change_model路径下,如下图所示。

第二:在task.py中导入

第三:在task.py中的模型配置部分下面代码

    ​​​​​​

第四:将模型配置文件复制到YOLOV11.YAMY文件中

    

     第五:运行成功


from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld

if __name__=="__main__":

    # 使用自己的YOLOv8.yamy文件搭建模型并加载预训练权重训练模型
    model = YOLO(r"D:\model\yolov11\ultralytics\cfg\models\11\yolo11_DFF.yaml")\
        .load(r'D:\model\yolov11\yolo11n.pt')  # build from YAML and transfer weights

    results = model.train(data=r'D:\model\yolov11\ultralytics\cfg\datasets\VOC_my.yaml',
                          epochs=300,
                          imgsz=640,
                          batch=64,
                          # cache = False,
                          # single_cls = False,  # 是否是单类别检测
                          # workers = 0,
                         # resume=r'D:/model/yolov8/runs/detect/train/weights/last.pt',
                         #  amp = True
                          )

### YOLO 模型中的特征融合机制解释 #### 自适应特征融合 ASF-YOLO ASF-YOLO 是一种改进特征融合层,旨在增强YOLOv8模型于目标检测和图像分割任务的表现。通过引入自适应特征融合机制,该方法可以根据输入图像的具体特性——包括特征尺度与语义信息——灵活调整特征融合的方式。这种灵活性使得模型可以更有效地捕捉多尺度下的细节,并且更加精准地整合来自不同层次的信息[^1]。 ```python def adaptive_feature_fusion(features, scales, semantics): """ 实现自适应特征融合逻辑 参数: features (list): 不同层次的特征图列表 scales (list): 对应各特征图的比例尺参数 semantics (list): 各特征图携带的语义权重 返回: fused_features: 融合后的最终特征表示 """ # 动态计算每层特征的重要性系数 importance_factors = compute_importance(scales, semantics) # 应用重要性因子加权求和得到综合特征表达 fused_features = sum([features[i]*importance_factors[i] for i in range(len(features))]) return fused_features ``` #### 分层特征融合 MSBlock 针对多尺度目标检测的需求,YOLO-MS提出了分层特征融合策略及其核心组件MSBlock。这一设计方案强调模块化的便利性和通用性,允许将此结构轻松嵌入至任何版本的YOLO框架内,从而善其处理大小各异物体的能力。具体而言,MSBlock负责收集低级视觉线索以及高级抽象概念,在两者间建立联系,进而优化整体识别精度[^2]。 ```python class MSBlock(nn.Module): def __init__(self, channels_list): super(MSBlock, self).__init__() # 定义跨级别连接操作... def forward(self, inputs): outputs = [] for idx, input_tensor in enumerate(inputs): output = apply_cross_level_connection(input_tensor, previous_outputs=outputs[:idx]) outputs.append(output) return torch.cat(outputs, dim=1) # 将所有级别的输出沿通道维度拼接起来 ``` #### Gather-and-Distribute 特征融合 基于华为提出的GATHERAND-DISTRIBUTE理念,Yolov7-GOLDYOLO实现了对传统YOLO架构下特征提取部分的重大革新。这种方法专注于如何高效聚合局部区域内的有效信息,并合理分配给后续处理单元,确保每一阶段都能充分利用前序步骤积累的知识成果,达到全局最优解的目的[^3]。 ```python def gather_and_distribute(feature_maps): gathered_info = aggregate_local_contexts(feature_maps) distributed_representation = redistribute_to_next_stage(gathered_info) return distributed_representation ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值