大连海事大学/信号与系统实验/实验二第一题/matlab解析法/LTI系统响应的时域求解

文章通过解析法求解给定微分方程的零状态响应,并使用MATLAB进行时域仿真,以exp(-t)u(t)为激励信号。在处理heaviside函数的不连续性时,进行了近似修正。最终,两种方法得到的结果基本一致,验证了解析法的正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

已知描述系统的微分方程和激励信号f(t)如下,试用解析法求系统的零状态响应y(t),并用MATLAB绘出系统零状态响应的时域仿真波形,验证结果是否相同。(3分)

y’’(t)+ 4y’(t)+4y(t)=f’(t)+3f(t)       f(t)= exp(-t)u(t)

好的学渣没有屏障,好的互联网不要搞信息差

以下为本人该题的理解,比较菜多有疏漏,请见谅

matlab中heaviside()函数是一个不连续的函数。

它返回 0 表示 x < 0,返回 1/2 表示 x = 0,返回 1 表示 x > 0。

最大的坑就是它=0时,为1/2。

解析法程序这里写y(-0.01)=0,dy(-0.01)=1,是正确写法反复报错下对heaviside函数的近似修正。

还有我选取-0.01,而不是什么-0.02,-0.001,是因为t1我是每隔0.01取一个值的,用其他应该也是没问题的。

matlab仿真本身就是一个非连续过程,人为再近似一下修正它函数没问题

我当初是这么想的对吧(确信.jpg)

解析法MATLAB程序:

syms y2(t1)

y2=dsolve('D2y+4*Dy+4*y=Df+3*f','f=exp(-1*t1)*heaviside(t1)','y(-0.01)=0,Dy(-0.01)=1','t1');

t1=0:0.01:3;

y3=eval(y2.y);

plot(t1,y3)

运行结果:

7e9580e129b14cfcb1a2825e87ebb7fb.png

MATLAB程序: 

a = [1 4 4];
b = [0 1 3];
sys =tf(b,a);
% sys是LTI系统模型,其调用格式sys=tf(b,a)
t = 0:0.01:3;
x = exp(-1*t);
y1 = lsim(sys, x, t); %系统的零状态响应
plot(t, y1);

运行结果:

23affd8b5f2249a7ac1bfad7d97c5a24.png

可以看到,两图基本一致。 

希望能帮到之后学这门课的同学!

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值