已知描述系统的微分方程和激励信号f(t)如下,试用解析法求系统的零状态响应y(t),并用MATLAB绘出系统零状态响应的时域仿真波形,验证结果是否相同。(3分)
y’’(t)+ 4y’(t)+4y(t)=f’(t)+3f(t) f(t)= exp(-t)u(t)
好的学渣没有屏障,好的互联网不要搞信息差
以下为本人该题的理解,比较菜多有疏漏,请见谅
matlab中heaviside()函数是一个不连续的函数。
它返回 0 表示 x < 0,返回 1/2 表示 x = 0,返回 1 表示 x > 0。
最大的坑就是它=0时,为1/2。
解析法程序这里写y(-0.01)=0,dy(-0.01)=1,是正确写法反复报错下对heaviside函数的近似修正。
还有我选取-0.01,而不是什么-0.02,-0.001,是因为t1我是每隔0.01取一个值的,用其他应该也是没问题的。
matlab仿真本身就是一个非连续过程,人为再近似一下修正它函数没问题
我当初是这么想的对吧(确信.jpg)
解析法MATLAB程序:
syms y2(t1)
y2=dsolve('D2y+4*Dy+4*y=Df+3*f','f=exp(-1*t1)*heaviside(t1)','y(-0.01)=0,Dy(-0.01)=1','t1');
t1=0:0.01:3;
y3=eval(y2.y);
plot(t1,y3)
运行结果:
MATLAB程序:
a = [1 4 4];
b = [0 1 3];
sys =tf(b,a);
% sys是LTI系统模型,其调用格式sys=tf(b,a)
t = 0:0.01:3;
x = exp(-1*t);
y1 = lsim(sys, x, t); %系统的零状态响应
plot(t, y1);
运行结果:
可以看到,两图基本一致。
希望能帮到之后学这门课的同学!