链表-LRU缓存

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:
LRU是Least Recently Used的缩写,意为“最近最少使用”。LRU是一种常用的缓存淘汰策略,用于管理缓存中的数据。

举个例子,你从一堆书中找出自己想要看的书,读完之后一般是放在最上面;如果你又从其他地方拿了一本书读完之后,打算放入这堆书中,如果这堆书中还有同名书,只是年份不同,那么就用这本书进行替换,如果没有同名书,由于“空间”不够使用,只能将最底下的书移走,再放入这本书

LRU缓存算法的基本思想是:当缓存空间不足时,优先淘汰最近最少使用的数据,以便为新数据腾出空间。具体来说,LRU算法会维护一个有序列表,列表中的元素按照访问时间从新到旧排列。每当缓存命中时,就将命中的数据移动到列表的头部,每当缓存缺失时,就将新数据插入到列表的头部,并将列表尾部的数据淘汰掉。

LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。

void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。

如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。

函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。

由于题目要求O(1)复杂度,采取双链表,每个节点都是一本书;使用哈希来快速查找书籍

先创建节点Node

struct Node{
   
   
    int _key;
    int _value;
    Node* _next;
    Node* _prev;
    Node(int key, int value): _key(key), _value(value), _next(nullptr), _prev(nullptr){
   
   }
};

刚开始时,使用一个哨兵节点

class LRUCache {
   
   
private:
    Node* _dummy;
    int _capacity;
    unordered_map<int, Node*> _map;
    
public:
    LRUCache(): _dummy(new Node(-1, -1)), _capacity(0){
   
   
        _dummy->_next = _dummy;
        _dummy->_prev = _dummy;
    }
};

实现查找书

    Node* get_node
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值