P2078 朋友 - 情侣配对大作战 题解

🌟 P2078 朋友 - 情侣配对大作战 题解

题目链接

洛谷原题链接

题目描述

小明和小红想帮公司里的朋友们脱单!公司分为:

  • A公司:全是男生(编号为正整数)
  • B公司:全是女生(编号为负整数)

朋友关系具有传递性(朋友的朋友也是朋友)。小明(编号1)和小红(编号-1)是朋友。现在需要找出小明和小红朋友圈中能配成的最大情侣对数(情侣必须是一男一女)。

输入格式

  • 第一行: N N N(A公司男生数), M M M(B公司女生数), P P P(男生朋友关系数), Q Q Q(女生朋友关系数)
  • 接下来 P P P行:每行两个正整数 x , y x, y x,y,表示男生 x x x y y y是朋友
  • 接下来 Q Q Q行:每行两个负整数 x , y x, y x,y,表示女生 x x x y y y是朋友

输出格式

一个整数,表示最大情侣对数

算法思路

核心思想

使用两个并查集分别管理男生和女生的朋友圈:

  1. 男生圈:管理A公司男性朋友关系
  2. 女生圈:管理B公司女性朋友关系(负数转正数处理)

最大情侣对数 = min(小明朋友圈男生数, 小红朋友圈女生数)

关键步骤

  1. 初始化并查集

    • 男生圈: N N N个节点(编号1~ N N N
    • 女生圈: M M M个节点(编号1~ M M M,对应原负数编号绝对值)
  2. 合并朋友关系

    • 男生关系:直接合并
    • 女生关系:取绝对值后合并
  3. 查询朋友圈大小

    • 小明朋友圈:男生圈中1号节点所在连通块大小
    • 小红朋友圈:女生圈中1号节点所在连通块大小

复杂度分析

  • 时间复杂度 O ( ( P + Q ) α ( N + M ) ) O((P+Q) \alpha(N+M)) O((P+Q)α(N+M))
    • α \alpha α为反阿克曼函数(接近 O ( 1 ) O(1) O(1))
    • P P P:男生关系数, Q Q Q:女生关系数
  • 空间复杂度 O ( N + M ) O(N+M) O(N+M)

代码实现

#include <iostream>
#include <algorithm>
using namespace std;

const int MAXN = 10010; // 最大员工数

// 并查集结构体
struct UnionFind {
    int parent[MAXN];  // 父节点数组
    int size[MAXN];    // 连通块大小
    
    // 初始化并查集
    void init(int n) {
        for (int i = 1; i <= n; i++) {
            parent[i] = i;
            size[i] = 1;
        }
    }
    
    // 查找根节点(带路径压缩)
    int find(int x) {
        return parent[x] == x ? x : parent[x] = find(parent[x]);
    }
    
    // 合并两个节点(按秩合并)
    void unite(int x, int y) {
        int rootX = find(x);
        int rootY = find(y);
        if (rootX == rootY) return;
        
        // 小树合并到大树
        if (size[rootX] < size[rootY]) 
            swap(rootX, rootY);
        
        parent[rootY] = rootX;
        size[rootX] += size[rootY];
    }
    
    // 获取连通块大小
    int getSize(int x) {
        return size[find(x)];
    }
};

int main() {
    int N, M, P, Q;
    cin >> N >> M >> P >> Q;
    
    // 初始化并查集
    UnionFind boyCircle, girlCircle;
    boyCircle.init(N); // 男生圈(A公司)
    girlCircle.init(M); // 女生圈(B公司)
    
    // 处理男生朋友关系
    while (P--) {
        int x, y;
        cin >> x >> y;
        boyCircle.unite(x, y);
    }
    
    // 处理女生朋友关系(负数转正数)
    while (Q--) {
        int x, y;
        cin >> x >> y;
        x = abs(x); 
        y = abs(y);
        girlCircle.unite(x, y);
    }
    
    // 获取朋友圈大小
    int boySize = boyCircle.getSize(1); // 小明朋友圈男生数
    int girlSize = girlCircle.getSize(1); // 小红朋友圈女生数
    
    // 最大情侣对数
    cout << min(boySize, girlSize) << endl;
    
    return 0;
}

代码解释

数据结构

  • UnionFind:并查集结构
    • parent:存储每个节点的父节点
    • size:存储每个连通块的大小
  • 核心方法
    • init(n):初始化 n n n个独立节点
    • find(x):查找根节点(路径压缩优化)
    • unite(x,y):合并两个节点(按秩合并优化)
    • getSize(x):获取 x x x所在连通块大小

关键逻辑

  1. 男生圈处理

    boyCircle.unite(x, y); // 直接合并男生关系
    
  2. 女生圈处理

    x = abs(x); y = abs(y); // 负数转正数
    girlCircle.unite(x, y); // 合并女生关系
    
  3. 朋友圈大小计算

    int boySize = boyCircle.getSize(1); // 小明朋友圈大小
    int girlSize = girlCircle.getSize(1); // 小红朋友圈大小
    
  4. 最大情侣对数

    min(boySize, girlSize); // 一男一女配一对
    

算法正确性证明

并查集优化

  1. 路径压缩find操作时扁平化结构,使后续查询 O ( 1 ) O(1) O(1)

    parent[x] = find(parent[x]); // 路径压缩
    
  2. 按秩合并:小树合并到大树,保证树高 O ( log ⁡ n ) O(\log n) O(logn)

    if (size[rootX] < size[rootY]) swap(rootX, rootY);
    size[rootX] += size[rootY];
    

情侣对数计算

设:

  • B m a x B_{max} Bmax = 小明朋友圈男生数
  • G m a x G_{max} Gmax = 小红朋友圈女生数

则最大情侣对数 P m a x = min ⁡ ( B m a x , G m a x ) P_{max} = \min(B_{max}, G_{max}) Pmax=min(Bmax,Gmax),因为:

  1. 每个情侣需要1男1女
  2. 男生必须来自小明朋友圈
  3. 女生必须来自小红朋友圈
  4. 情侣配对互不影响

测试样例

输入 #1

4 3 4 2
1 1
1 2
2 3
1 3
-1 -2
-3 -3

输出 #1

2

解释

  • 男生圈:{1,2,3}连通(大小=3)
  • 女生圈:{1,2}连通(大小=2)
  • 最大情侣对数 = min(3,2) = 2

输入 #2

5 4 3 2
1 2
2 3
4 5
-1 -2
-3 -4

输出 #2

2

解释

  • 男生圈:{1,2,3}连通(大小=3),{4,5}连通(大小=2)
  • 女生圈:{1,2}连通(大小=2),{3,4}连通(大小=2)
  • 小明朋友圈(节点1):大小=3
  • 小红朋友圈(节点1):大小=2
  • 最大情侣对数 = min(3,2) = 2

拓展思考

  1. 如果小明和小红可以配对:代码已包含(小明在男生圈,小红在女生圈)
  2. 多公司扩展:可通过增加并查集数量支持
  3. 动态关系处理:使用动态并查集(带删除操作)

复杂度证明

时间复杂度

n = N + M n = N + M n=N+M m = P + Q m = P + Q m=P+Q

  • 并查集操作: O ( α ( n ) ) O(\alpha(n)) O(α(n))每次
  • 总时间: O ( m α ( n ) ) ≈ O ( m ) O(m \alpha(n)) \approx O(m) O(mα(n))O(m)(实际效率接近线性)

空间复杂度

  • 存储并查集: O ( N + M ) O(N + M) O(N+M)
  • 总空间: O ( max ⁡ ( N , M ) ) O(\max(N,M)) O(max(N,M))

相似题目

  1. P3367 【模板】并查集
  2. P1551 亲戚
  3. P1396 营救
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值