背包问题详细介绍

一. 01背包问题

01背包问题是经典的动态规划问题,适合用动态规划求解。问题描述为:给定一个容量为W的背包和n个物品,每个物品有重量和价值,目标是选择物品以最大化背包中的总价值,同时不超过容量W。

问题定义:

  1. 输入:
  • W:背包容量
  • weights:物品重量数组
  • values:物品价值数组
  1. 输出:
  • 最大价值总和,且装入背包的物品总重量不超过W。

动态规划思路:

  1. 状态定义:dp[i][j]表示前i个物品在容量为j时的最大价值。
  2. 状态转移:
  • 不选择第i个物品:dp[i][j] = dp[i-1][j]
  • 选择第i个物品(前提是重量不超过j):dp[i][j] = dp[i-1][j-weights[i-1]] + values[i-1]

综合:

dp[i][j] = {
  dp[i-1][j], 如果 weights[i-1] > j
  max(dp[i-1][j], dp[i-1][j-weights[i-1]] + values[i-1]), 否则
}
  1. 初始化:dp[0][j] = 0(无物品时最大价值为0),dp[i][0] = 0(容量为0时最大价值也为0)。

C++ 示例代码:

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

int knapsack(int W, const vector<int>& weights, const vector<int>& values) {
   
   
    int n = weights.size();
    vector<vector<int>> dp(n + 1, vector<int>(W + 1, 0));

    for (int i = 1; i 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值