LeetCode:46.全排列

本文介绍了LeetCode第46题全排列的解决方案,重点讲解了使用递归和回溯算法的思路。首先阐述了递归和回溯的基本概念,然后通过代码解释了如何生成一个列表的所有排列。在代码示例中,详细展示了如何逐步构造排列并回溯以找到所有可能的解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

class Solution(object):
    def permute(self, nums):
        """
        :type nums: List[int]
        :rtype: List[List[int]]
        """
        if len(nums) == 1:
            return [nums]
        res = []
        for sub in self.permute(nums[1:]):
            for i in range(len(sub)+1):
                res.append(sub[:i]+[nums[0]]+sub[i:])
        return res

递归和回溯的概念

  • 递归:一个函数在其定义中直接或间接调用自身的方法。在这个例子中,permute函数在定义中调用了自身。
  • 回溯:一种通过探索所有可能的候选解来找出所有解的算法。如果候选解被确认不是一个解的话(或者至少不是最后一个解),回溯算法会通过在上一步进行一些变化来丢弃该解,即“回溯”。

代码解释

  • if len(nums) == 1::如果nums列表只包含一个元素,那么它本身就是一个排列,直接返回包含这个元素的列表。
  • res = []:初始化一个空列表res,用于存储所有的排列。
  • for sub in self.permute(nums[1:])::对nums列表的剩余部分(除第一个元素外的部分)进行排列。self.permute(nums[1:])会递归地生成剩余部分的所有排列。
  • for i in range(len(sub)+1)::对于每一个子排列sub,遍历从0到len(sub)的所有索引。这些索引决定了第一个元素nums[0]应该插入到sub的哪个位置。
  • res.append(sub[:i]+[nums[0]]+sub[i:]):在sub的第i个位置之前插入nums[0],然后将新的排列添加到res中。这就是回溯的部分,因为我们在每一步都尝试将nums[0]插入到不同的位置,然后继续递归处理剩余的元素。

举例
假设nums = [1, 2, 3],我们想生成它的所有排列。

  1. 初始调用:self.permute([1, 2, 3])
  2. 第一次递归调用:self.permute([2, 3])
    • 第二次递归调用:self.permute([3])
      • 返回:[[3]]
    • 2插入到[3]的每个位置,得到[[2, 3], [3, 2]]
  3. 1插入到每个[2, 3][3, 2]的位置,得到所有可能的排列:
    • [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1], [3, 1, 2]]

这就是整个递归和回溯的过程。最终,我们得到了nums的所有可能排列。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值