洛谷P8662[蓝桥杯 2018 省 AB] 全球变暖
题目描述
你有一张某海域 N×NN \times NN×N 像素的照片,.
表示海洋、 #
表示陆地,如下所示:
.......
.##....
.##....
....##.
..####.
...###.
.......
其中 “上下左右” 四个方向上连在一起的一片陆地组成一座岛屿。例如上图就有 222 座岛屿。
由于全球变暖导致了海面上升,科学家预测未来几十年,岛屿边缘一个像素的范围会被海水淹没。具体来说如果一块陆地像素与海洋相邻(上下左右四个相邻像素中有海洋),它就会被淹没。
例如上图中的海域未来会变成如下样子:
.......
.......
.......
.......
....#..
.......
.......
请你计算:依照科学家的预测,照片中有多少岛屿会被完全淹没。
输入格式
第一行包含一个整数 NNN。(1≤N≤1000)(1 \le N \le 1000)(1≤N≤1000)。
以下 NNN 行 NNN 列代表一张海域照片。
照片保证第 111 行、第 111 列、第 NNN 行、第 NNN 列的像素都是海洋。
输出格式
一个整数表示答案。
样例 #1
样例输入 #1
7
.......
.##....
.##....
....##.
..####.
...###.
.......
样例输出 #1
1
提示
时限 1 秒, 256M。蓝桥杯 2018 年第九届省赛
思路
连通块的一点小变种的题,我们可以像这样思考:淹没的岛屿数量=淹没前岛屿数量-淹没后的岛屿数量。
对于源照片,我们可以这样先计算出没淹没时的初始岛屿数量:
.......
.##....
.##....
....##.
..####.
...###.
.......
这个连通块与以前介绍的不同,我们用这样的思路,对于每一个“#”我们都用dfs搜索并且标记为“.”即海洋,每执行一次dfs,就将记录结果+1,这样就能计数了。
还是熟悉的dfs:
dfs(int x,int y){
if(边界条件or地图的该位置不是海洋)
return;
for(int i=0;i<4;i++){
int newx=x+dx[i];
int newy=y+dy[i];
dfs(newx,newy);
}
}//示例伪代码
再对地图for循环,每个循环执行dfs,就能计数淹没前的岛屿数量了,但是,这样的计数是具有破坏性的,所以我们必须建立一个地图副本来保持源地图的完整性。
再算出淹没后的岛屿数量:首先,要弄明白什么样的岛屿块会被淹没,即如果“#”周围至少有一个“.”就会被淹没,我们标记可淹没的岛屿块为“*”。
这个同样可以在main函数中预处理。
预处理后,以上图为例:
.......
.**....
.**....
....**.
..**#*.
...***.
.......
同样我们可以dfs来计数“#”的联通块:
ok,现在我们上代码:
#include<bits/stdc++.h>
using namespace std;
int n;
int ans_before;//淹没前的岛屿计数
int ans_after;//淹没后的岛屿计数
int dx[]={
0,0,1,-1};
int dy[