Educational Codeforces Round 145 (Rated for Div. 2) 题解

文章介绍了三个编程问题的解题思路。第一个问题涉及灯泡颜色变换,不允许连续两次操作相同颜色的灯泡,根据颜色数量判断是否能完成操作。第二个问题是关于平面上的点,通过观察找到正方形的规律求解。第三个问题讨论了特定条件下的子序列和计算策略,利用动态规划避免出现和为0的子序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总结:这一场挺不容易的,思路也是挺奇特的,就是做上去感觉怪怪的,没有一点感觉

A. Garland

思路:不能连续操作两个相同颜色的灯泡,所以记录灯泡的颜色的数量,因为只有四个灯泡,便可以分情况来讨论,若最大数量为4,即只有一种颜色,则不能操作成功,输出-1,若最大颜色数量为3,则操作6次即可,若最大颜色数量为其他,操作4次,算是找出来的规律吧

//可以学习一个记数的方法!!! 
#include<iostream>
#include<algorithm> 
#include<cstring>
using namespace std;

int x[10];
int main(){
	int T;
	string s;
	cin>>T;
	while(T--){
		memset(x,0,sizeof(x));
		cin>>s;
		//记录每个数字出现的次数即可 
		for(int i=0;i<4;i++){
			x[s[i]-'0']++;
		}
		//排序并输出结果 
		sort(x,x+10);
		int a=x[9],b=x[8],c=x[7],d=x[6];
		//模拟答案并输出即可 
		if(a==4){
			cout<<-1<<'\n';
		}else if(a==3){
			cout<<6<<'\n';
		}else{
			cout<<4<<'\n';
		}
	}
	
	return 0;
}

B. Points on Plane

做法也是挺奇特的,开始时完全没有想到,还想到了分情况讨论,以及BFS啥的,但发现自己写不出来,只能看大佬的代码,后来发现自己就是个傻

思路:不想写麻烦的代码,那就找规律吧,将原点有点和没点的情况都画出来,可发现所有的点可围成正方形,即可以找到规律,推出公式 

#include<iostream>
#include<cmath>
#define int long long
using namespace std;

signed main(){
	int T,n;
	cin>>T;
	while(T--){
		cin>>n;
		cout<<(int)sqrt(n-1)<<'\n';
		//sqrt的返回值类型double
		//先n-1就等于,sqrt(n)上取整再减1 
	}
}

C. Sum on Subarrays

这题困扰了我好久,真的是做吐了的。。。

思路:注意!!!这道题的要求比较苛刻,子序列的和只能是正数或者负数,不能为0!!!因为数据量很小,最多只有30个数,所以初始化为-100即可,前面都是正数(设为2),后面都是复数,每增加一个整数贡献i,如果再加一个正数超过目标值(ans<k&&ans+i+1>k),则要根据前面的2的数量增加一个复数(-((i-k+ans)*2+1)),注意不能出现0,所以要加1!!!

#include<iostream>
using namespace std;

const int N=35;
int a[N];
int main(){
	int T,n,k,ans;
	cin>>T;
	while(T--){
		ans=0;
		cin>>n>>k;
		for(int i=1;i<=n;i++){
			a[i]=-100;
		}
		for(int i=1;i<=n;i++){
			ans+=i;
			if(ans<=k){
				a[i]=2;
			}
			if(ans<k&&ans+i+1>k){
				a[i+1]=-((i-k+ans)*2+1);
				break; 
			}
		}
		for(int i=1;i<=n;i++){
			cout<<a[i]<<' ';
		}
		cout<<'\n';
	}
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

古谷彻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值