Lagent 自定义你的 Agent 智能体

目录

1 实践

1.1 环境配置

1.2 Lagent框架中Agent的使用

1.3 制作一个属于自己的Agent 

1.4 Multi-Agents博客写作系统的搭建 

2 优秀学员必做

1 实践

1.1 环境配置

开发机选择 30% A100,镜像选择为 Cuda12.2-conda。

首先来为 Lagent 配置一个可用的环境。

# 创建环境
conda create -n lagent python=3.10 -y
# 激活环境
conda activate lagent
# 安装 torch
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖包
pip install termcolor==2.4.0
pip install streamlit==1.39.0
pip install class_registry==2.1.2
pip install datasets==3.1.0

接下来,我们通过源码安装的方式安装 lagent。

# 创建目录以存放代码
mkdir -p /root/agent_camp4
cd /root/agent_camp4
git clone https://github.com/InternLM/lagent.git
cd lagent && git checkout e304e5d && pip install -e . && cd ..
pip install griffe==0.48.0

1.2 Lagent框架中Agent的使用

接下来,我们将使用 Lagent 框架,一步步搭建并使用基于 InternLM2.5 的 Web Demo,体验其强大的智能体功能。

首先,需要申请 API 授权令牌 ,请前往 书生·浦语 API 文档 申请并获取 Authorization 令牌,将其填入后续代码的 YOUR_TOKEN_HERE 变量中。

创建一个代码example,创建agent_api_web_demo.py,在里面实现我们的Web Demo:

conda activate lagent
cd /root/agent_camp4/lagent/examples
touch agent_api_web_demo.py

Action,也称为工具,Lagent中集成了很多好用的工具,提供了一套LLM驱动的智能体用来与真实世界交互并执行复杂任务的函数,包括谷歌文献检索、Arxiv文献检索、Python编译器等。具体可以查看文档

让我们来体验一下,让LLM调用Arxiv文献检索这个工具:

agent_api_web_demo.py中写入下面的代码,这里利用 GPTAPI 类,该类继承自 BaseAPILLM,封装了对 API 的调用逻辑,然后利用Streamlit启动Web服务:

import copy
import os
from typing import List
import streamlit as st
from lagent.actions import ArxivSearch
from lagent.prompts.parsers import PluginParser
from lagent.agents.stream import INTERPRETER_CN, META_CN, PLUGIN_CN, AgentForInternLM, get_plugin_prompt
from lagent.llms import GPTAPI

class SessionState:
    """管理会话状态的类。"""

    def init_state(self):
        """初始化会话状态变量。"""
        st.session_state['assistant'] = []  # 助手消息历史
        st.session_state['user'] = []  # 用户消息历史
        # 初始化插件列表
        action_list = [
            ArxivSearch(),
        ]
        st.session_state['plugin_map'] = {action.name: action for action in action_list}
        st.session_state['model_map'] = {}  # 存储模型实例
        st.session_state['model_selected'] = None  # 当前选定模型
        st.session_state['plugin_actions'] = set()  # 当前激活插件
        st.session_state['history'] = []  # 聊天历史
        st.session_state['api_base'] = None  # 初始化API base地址

    def clear_state(self):
        """清除当前会话状态。"""
        st.session_state['assistant'] = []
        st.session_state['user'] = []
        st.session_state['model_selected'] = None


class StreamlitUI:
    """管理 Streamlit 界面的类。"""

    def __init__(self, session_state: SessionState):
        self.session_state = session_state
        self.plugin_action = []  # 当前选定的插件
        # 初始化提示词
        self.meta_prompt = META_CN
        self.plugin_prompt = PLUGIN_CN
        self.init_streamlit()

    def init_streamlit(self):
        """初始化 Streamlit 的 UI 设置。"""
        st.set_page_config(
            layout='wide',
            page_title='lagent-web',
            page_icon='./docs/imgs/lagent_icon.png'
        )
        st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')

    def setup_sidebar(self):
        """设置侧边栏,选择模型和插件。"""
        # 模型名称和 API Base 输入框
        model_name = st.sidebar.text_input('模型名称:', value='internlm2.5-latest')
        
        # ================================== 硅基流动的API ==================================
        # 注意,如果采用硅基流动API,模型名称需要更改为:internlm/internlm2_5-7b-chat 或者 internlm/internlm2_5-20b-chat
        # api_base = st.sidebar.text_input(
        #     'API Base 地址:', value='https://api.siliconflow.cn/v1/chat/completions'
        # )
        # ================================== 浦语官方的API ==================================
        api_base = st.sidebar.text_input(
            'API Base 地址:', value='https://internlm-chat.intern-ai.org.cn/puyu/api/v1/chat/completions'
        )
        # ==================================================================================
        # 插件选择
        plugin_name = st.sidebar.multiselect(
            '插件选择',
            options=list(st.session_state['plugin_map'].keys()),
            default=[],
        )

        # 根据选择的插件生成插件操作列表
        self.plugin_action = [st.session_state['plugin_map'][name] for name in plugin_name]

        # 动态生成插件提示
        if self.plugin_action:
            self.plugin_prompt = get_plugin_prompt(self.plugin_action)

        # 清空对话按钮
        if st.sidebar.button('清空对话', key='clear'):
            self.session_state.clear_state()

        return model_name, api_base, self.plugin_action

    def initialize_chatbot(self, model_name, api_base, plugin_action):
        """初始化 GPTAPI 实例作为 chatbot。"""
        token = os.getenv("token")
        if not token:
            st.error("未检测到环境变量 `token`,请设置环境变量,例如 `export token='your_token_here'` 后重新运行 X﹏X")
            st.stop()  # 停止运行应用
            
        # 创建完整的 meta_prompt,保留原始结构并动态插入侧边栏配置
        meta_prompt = [
            {"role": "system"
03-10
<think>好的,用户想查询关于Lagent的IT技术信息。我需要先回顾一下提供的引用内容,看看有哪些相关信息。 首先,引用[2]提到Lagent允许用户自定义工具,需要继承BaseAction类并实现run方法,或者使用tool_api装饰器。这说明Lagent是一个智能体框架,支持工具扩展。引用[3]指出Lagent支持多种工具,如Arxiv搜索、Google搜索、IPython解释器等,还提到它支持AutoGPT和ReAct等智能体范式。引用[4]和[5]则涉及Lagent的Web Demo部署和使用,特别是通过LMDeploy部署,并展示如何配置模型IP和选择插件如ArxivSearch。 接下来,我需要整理这些信息,确保覆盖Lagent的核心功能、工具支持、应用场景以及部署方法。要使用中文回答,并正确应用格式规则,如行内数学公式用$...$,独立公式用$$...$$,但当前内容中没有涉及数学表达式,所以可能不需要。同时,生成相关问题时要考虑用户可能的进一步疑问,比如技术原理、应用案例或与其他框架的比较。 需要检查引用标注是否正确,每个引用后的标识是否对应正确的来源。例如,引用[2]对应Lagent自定义工具的步骤,引用[3]关于支持的工具列表。确保回答结构清晰,分点说明,并自然添加引用标识。 最后,生成的相关问题应围绕用户可能感兴趣的方向,如技术细节、应用场景、部署教程等,确保问题具有针对性和扩展性。</think>关于Lagent智能体框架的IT技术信息整理如下: ### Lagent技术概述 Lagent是面向大语言模型的轻量级开源智能体框架,核心功能是为大模型提供工具调用能力,实现智能体应用开发[^2][^4]。 ### 核心特性 1. **多范式支持**: - 已集成AutoGPT、ReAct等经典智能体范式[^3] - 支持链式思考(Chain-of-Thought)推理模式[^4] 2. **工具生态**: ```markdown - 内置工具包括: * Arxiv学术搜索 * Google/百度搜索引擎 * IPython代码解释器 * PPT生成工具 * 地图服务接口[^3][^5] - 支持自定义工具扩展,可通过继承BaseAction类实现 ``` 3. **系统架构**: $$架构层级 = 语言模型 + 智能体核心 + 工具集$$ 采用模块化设计,通过API接口实现各组件解耦 ### 应用场景 1. 学术研究:通过ArxivSearch插件实现论文检索 2. 数据分析:集成IPython解释器支持交互式数据处理[^3] 3. 自动化办公:内置PPT生成工具 ### 部署方式 1. **Web Demo部署**: ```bash # 通过LMDeploy部署服务 python -m lmdeploy.serve.turbomind.deploy InternLM2-chat-7b ./model ``` 2. 本地访问地址:`http://localhost:7860`
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值