合并果子(贪心算法,huffman树)

在一个果园里,达达已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。

达达决定把所有的果子合成一堆。

每一次合并,达达可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。

可以看出,所有的果子经过 n−1 次合并之后,就只剩下一堆了。

达达在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以达达在合并果子时要尽可能地节省体力。

假定每个果子重量都为 11,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使达达耗费的体力最少,并输出这个最小的体力耗费值。

例如有 33 种果子,数目依次为 1,2,91,2,9。

可以先将 1、21、2 堆合并,新堆数目为 33,耗费体力为 33。

接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 1212,耗费体力为 1212。

所以达达总共耗费体力=3+12=15=3+12=15。

可以证明 1515 为最小的体力耗费值。

输入格式

输入包括两行,第一行是一个整数 n,表示果子的种类数。

第二行包含 n 个整数,用空格分隔,第 i 个整数 ai 是第 i种果子的数目。

输出格式

输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。

输入数据保证这个值小于 231231。

数据范围

1≤n≤10000,
1≤ai≤20000

输入样例:
3 
1 2 9 
输出样例:
15

算法


(贪心,哈夫曼树,堆,优先队列) O(nlogn)。
经典哈夫曼树的模型,每次合并重量最小的两堆果子即可。

时间复杂度
使用小根堆维护所有果子,每次弹出堆顶的两堆果子,并将其合并,合并之后将两堆重量之和再次插入小根堆中。

每次操作会将果子的堆数减一,一共操作 n−1。
 次即可将所有果子合并成1堆。每次操作涉及到2次堆的删除操作和1次堆的插入操作,计算量是 O(logn)。因此总时间复杂度是 O(nlogn)
 

#include<iostream>
#include<algorithm>
#include<queue>

using namespace std;

int main(){
    int n;
    scanf("%d",&n);
    priority_queue<int, vector<int>,greater<int>> heap;
    while(n--){
        int x;
        scanf("%d",&x);
        heap.push(x);
    }
    
    int res=0;
    while(heap.size()>1){
        int a=heap.top();heap.pop();
        int b=heap.top();heap.pop();
        res+=a+b;
        heap.push(a+b);
    }
    printf("%d\n",res);
    return 0;
}

### Huffman及其贪心算法的实现与原理 #### 什么是HuffmanHuffman,也称为最优二叉,是一种带权路径长度最短的二叉。它的构建基于贪心算法的思想,在数据压缩领域有着广泛的应用。具体来说,Huffman通过对字符频率进行统计并按照权重从小到大依次合并的方式生成一棵二叉,使得高频字符对应较短的编码,低频字符对应较长的编码[^1]。 #### 贪心算法的核心思想 贪心算法在每一步选择中都采取当前状态下最优的选择,期望通过一系列局部最优解得到全局最优解。对于Huffman编码而言,其核心在于每次都选取两个频率最小的节点进行合并,形成新的父节点,并将其重新加入待处理集合中,直至所有节点被合并为一颗完整的二叉[^2]。 #### Huffman的具体构建过程 以下是Huffman的构建步骤: 1. **初始化**:根据输入字符串中的字符频率创建一个优先队列(通常是小顶堆),其中每个节点代表一个字符以及对应的频率。 2. **迭代合并**:从优先队列中取出频率最小的两个节点,将它们作为左右子节点创建一个新的内部节点,新节点的频率等于这两个节点频率之和。随后将该新节点放回优先队列中。 3. **终止条件**:重复上述操作,直到优先队列中只剩下一个节点为止,此时这唯一剩下的节点即为Huffman的根节点[^4]。 #### Python实现示例 下面是一个简单的Python程序,演示如何使用贪心算法构建Huffman并对字符进行编码: ```python import heapq from collections import defaultdict, namedtuple Node = namedtuple("Node", ["frequency", "char", "left", "right"]) def huffman_tree(string): frequency_map = defaultdict(int) for char in string: frequency_map[char] += 1 heap = [] for char, freq in frequency_map.items(): heapq.heappush(heap, Node(freq, char, None, None)) while len(heap) > 1: node1 = heapq.heappop(heap) node2 = heapq.heappop(heap) merged_node = Node(node1.frequency + node2.frequency, None, node1, node2) heapq.heappush(heap, merged_node) return heap[0] def generate_codes(node, current_code="", code_dict=None): if code_dict is None: code_dict = {} if node.char is not None: code_dict[node.char] = current_code or "0" else: generate_codes(node.left, current_code + "0", code_dict) generate_codes(node.right, current_code + "1", code_dict) return code_dict # 测试函数 if __name__ == "__main__": test_string = "this is an example of a huffman tree" root = huffman_tree(test_string) codes = generate_codes(root) print(codes) ``` 此代码实现了Huffman的构建及字符编码功能。首先统计输入字符串中各字符出现的频率,接着利用这些频率构造Huffman,最后遍历整棵以获取各个字符的二进制编码[^3]。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值