Deepseek API极限压测:高并发下的稳定性与弹性伸缩探秘​

目录

项目场景

实验环境及思路

实验步骤与数据分析

一、环境准备与基准测试

二、开展梯度加压测试

三、正式开展梯度并发测试

四、数据分析

实验总结

附录


项目场景

        我在测试中用到了Deepseek的API,虽然用起来调用的十分流程,但心里总有个疑问:这API的性能底线到底在哪?官方文档好像也没明确说并发限制。万一我的用户量突然涨起来,它能不能扛得住(稳定性)

        为了后续大量访问deepseek的API时能吃下“定心丸”,所以我决定用JMeter来测试一下Deepseek API在高并发下能否稳定的运行。


实验环境及思路

  1. 测试环境:Apache JMeter(非GUI模式压测)
  2. 测试对象:Deepseek API(https://api.deepseek.com)
  3. 测试思路:我采用了最实在的 ​​“分阶段稳态压力测试法”​​。简单说,就是​​固定并发用户数,持续跑一段时间​​。比如,我先用5个用户持续跑,稳定后记录数据;然后再用10个用户跑,再记录;接着是15、20、25...用户。


实验步骤与数据分析

实验简介:利用JMeter多个线程模拟不同程度的用户介入Deepseek API进行循环测试

        总体架构:

                        ​​​

一、环境准备与基准测试

        1.首先我在整个测试环境中先加入了一个“预热”的线程组,配置为1个用户,在1秒内启动,循环100次。用1个用户慢慢跑,获取最基础的性能数据。

        2.配置HTTP请求(发送给Deepseek API),在这里设置了发送给Deepseek API的具体问题1+1=?

                                在这里设置了发送给Deepseek API的具体问题1+1=?

        3.配置HTTP信息头管理器,这是我的请求头配置,里面包含了认证密钥和Content-Type。可以看到我设置了Authorization: Bearer sk-...和Content-Type: application/json,这是调用API的关键。

二、开展梯度加压测试

        为了稳定的测试,我并没有选择一次性大量的进行测试,而是先用了一次40线程数的一个小测试,对Deepseek API的大体性能进评估。参数设置如下:

        测试结果和我的预期也大相径庭,Deepseek API作为大模型人工智能不管是在数据还是吞吐量方面都具有很强的稳定性,测试结果图如下所示:

三、正式开展梯度并发测试

        为了稳定的进行测试,我分为了两组实验,第一组设置了线程数梯度为5,10,15,20,25;第二组设置了30,35,40,45,50。

        虽然梯度都是5的正增长,但是具体的参数设置缺有所不同。

四、数据分析

结果我会放在一起进行对比,由于数据表的长度过长(整理在尾页的附录中,有兴趣的可以参考参考),所以我自己整理做成了表格如下:

我模拟的用户数​​样本数​​平均响应时间(ms)​​吞吐量(QPS)​​错误率(%)​​我的观察​
512448961.00.00%​​​ 稳如老狗,一切正常。
1024948862.00.00%​​​ 非常稳定,响应时间几乎没变。
1537049363.00.00%​​​ 依然坚挺,QPS随并发线性增长。
20493~4912~3.90.00%持续稳定。
25629~4846~5.00.00%表现线性增长,未见瓶颈。
​30​​2103​​4857​​5.8​​1.43%​​首次出现错误!看来碰到初始资源的天花板了。​
​35​​1275​​4940​​7.41​​0.00%​​神奇的事情发生了!错误消失,性能不降反升!​
40146549118.500.00%稳得很,性能还在提升。
45165848889.00.00%继续稳。
5018564857​​10.78​​0.00%​​非常稳定!处理能力相比30用户时提升近一倍!​

看着这些数据,我当时的反应是:​​这API有点东西!​

我最大的两个发现是:

​        它稳得可怕​​:从5到50个用户,响应时间一直在4850ms上下微动,波动极小。这意味着我的请求基本不用排队,不管有多少人同时在用,单个请求的体验是高度一致的。这种可预测性对开发者来说太友好了。

​         自动扩容:​​ 最让我吃惊的就是30-35的转变。在30用户刚出点错后,我本以为35用户会崩得更厉害,结果它居然​​完全恢复了,而且吞吐量大幅提升​​,这明显是后台监控到负载过高,自动扩容​​了,这是云大厂顶级服务才有的特性,没想到Deepseek也安排上了。


实验总结

经过这一轮的测试,我也总结了一下的结论:

        1.性能临界:在我的实验中当30个左右的用户并发时,可能会遇到一定的异常数据(自测约1.43%)

        虽然有异常数据,但是也别慌张,这大有可能是系统在自动扩容的信号。

        2.QPS功能:在​​50个并发用户/10.78 QPS​​的压力下,Deepseek API ​​并未展现出任何性能衰减的迹象​​。这不仅意味着我们​​远未触及其真正的性能上限​​,更重要的是,它证明了该服务具备支撑中小型应用生产环境流量的能力。

总结一下:​​ Deepseek API不是一个“小家子气”的服务,而是一个拥有​​弹性伸缩能力​​的现代云服务。你可以对它的并发能力更有信心,不用担心流量一涨它就崩。对于大多数中小应用和创业项目来说,这个性能水平绝对是够用且可靠的。

后记:这次测试烧了我不少token,如果觉得我的这份实测报告对你有所帮助,解决了你的疑惑,欢迎给我​​点个赞、收个藏​​,你们的支持是我分享的最大动力!如果你们还想看我测试什么,欢迎在评论区告诉我!


附录

实验数据截图:

并发5用户汇总报告

并发10用户汇总报告

并发15用户汇总报告

并发20用户汇总报告

并发25用户汇总报告

并发30用户汇总报告

并发35用户汇总报告

并发40用户汇总报告

并发45用户汇总报告

并发50用户汇总报告

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值