题目背景
若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系。
题目描述
规定:x 和 y 是亲戚,y 和 z 是亲戚,那么 x 和 z 也是亲戚。如果 x,y 是亲戚,那么 x 的亲戚都是 y 的亲戚,y 的亲戚也都是 x 的亲戚。
输入格式
第一行:三个整数 n,m,p,(n,m,p≤5000),分别表示有 n 个人,m 个亲戚关系,询问 p 对亲戚关系。
以下 m 行:每行两个数 Mi,Mj,1≤Mi, Mj≤n,表示 Mi 和 Mj 具有亲戚关系。
接下来 p 行:每行两个数 Pi,Pj,询问 Pi 和 Pj 是否具有亲戚关系。
输出格式
p 行,每行一个 Yes
或 No
。表示第 i 个询问的答案为“具有”或“不具有”亲戚关系。
输入输出样例
输入 #1复制运行
6 5 3 1 2 1 5 3 4 5 2 1 3 1 4 2 3 5 6
输出 #1复制运行
Yes Yes No
解题思路:
1、建立一个数组f[5005],其中f[i]代表编号为i的人的直接亲戚(通过后面的合并函数joinn,保证了每个人只有一个直接亲戚)
2、find函数,查找某个人的祖宗(注意是祖宗不是亲戚,相当于遍历完整条链)
3、每输入一次,就双方的亲戚家族合并(通过合并函数实现)
怎么合并呢?将x的祖先指向y,即y是x的祖先的祖先,那么现在x和y都有一个共同的祖先,就是y的祖先,这样就把x的亲戚家族和y的亲戚家族合并在一起了。
输完亲戚关系后,就有了一个完整的亲戚关系网,递归查找每个人的祖先即可。
AC代码:
#include <bits/stdc++.h>
using namespace std;
int f[5005];//表示x的直接亲戚
int findd(int x)//查找x的祖宗
{
if(x==f[x])
return x;
else
return findd(f[x]);
}
void joinn(int a,int b)
{
int x=findd(a);//a的祖宗
int y=findd(b);//b的祖宗
f[x]=y;//认祖归宗,连接亲戚网
//这样就保证了每个人只有一个直接亲戚
}
int main()
{
int n,m,p;
cin >> n >> m >> p;
//先初始化每个人自己的祖先为他自己
for(int i=1;i<=n;i++)
{
f[i]=i;
}
for(int i=0;i<m;i++)
{
int x,y;
cin >> x >> y;
joinn(x,y);
}
for(int i=0;i<p;i++)
{
int x,y;
cin >> x >> y;
if(findd(x)==findd(y))
cout << "Yes" << endl;
else
cout << "No" << endl;
}
return 0;
}