在一条环路上有 n
个加油站,其中第 i
个加油站有汽油 gas[i]
升。
你有一辆油箱容量无限的的汽车,从第 i
个加油站开往第 i+1
个加油站需要消耗汽油 cost[i]
升。你从其中的一个加油站出发,开始时油箱为空。
给定两个整数数组 gas
和 cost
,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1
。如果存在解,则 保证 它是 唯一 的。
示例 1:
输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2] 输出: 3 解释: 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油 开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油 开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油 开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油 开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油 开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。 因此,3 可为起始索引。
示例 2:
输入: gas = [2,3,4], cost = [3,4,3] 输出: -1 解释: 你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。 我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油 开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油 开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油 你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。 因此,无论怎样,你都不可能绕环路行驶一周
提示:
gas.length == n
cost.length == n
1 <= n <= 105
0 <= gas[i], cost[i] <= 104
审题,发现该题可以简化,我们知道若是要完成一次行驶一周,那么必须保证通路。
令数组rest[i] = gas[i] - cost[i],代表若是要从该加油站继续行驶所消耗(则该值为负)或是获得(则该值为正)的油量。例如对于示例1的第一个加油站而言,rest值等于 -3,代表仅仅从该加油站前往下一个加油站所额外需要3点油量。我们可以很轻易地知道,对rest数组求和,若是和值小于0,则永远不可能完成绕行一周。反之可以。接下来我们考虑贪心求解。
设立curSum与返回值re,对数组求和。一旦curSum<0,则re = i(即分割点的索引) + 1,curSum置零,重新开始计算和值。循环完成后返回re。re其实代表着一个分割点,在其之前的所有点都不可能是始发点,因为它们的和值小于0,从它们中任何一个点出发,最后都会需大于供。当前情况我们已知有解,那么总的和是要大于0的,分割点之前的和值小于0,意味着其后的和值必定大于0。我们就先贪心,认为i + 1就是我们要找的起始点(至于为什么是i + 1,因为我们需要环行一周,可以把分割点之前的所有加油站简化为一个大加油站,消耗的油量就是其和值。我们无法判断从i+2开始的和值是否能比其和值要大,若是小了,那么我们是无法穿过那个大加油站,完成环行的),以此类推,直到找到最后一个分割点+1(显然若是有解的话一定会有这么一点),也就是i + 1,返回即可。
代码如下:
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost)
{
vector<int> rest(gas.size());
for(int i=0;i<rest.size();++i)
rest[i] = gas[i] - cost[i];
int sum = 0,re = 0;
int curSum = 0;
for(int i=0;i<rest.size();++i)
{
sum+=rest[i];
curSum+=rest[i];
if(curSum < 0)
{
re = i+1;
curSum = 0;
}
}
if(sum<0)
return -1;
else return re;
}
};