最近研学过程中发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击链接跳转到网站人工智能及编程语言学习教程。读者们可以通过里面的文章详细了解一下人工智能及其编程等教程和学习方法。下面开始对正文内容的介绍。
标签:3D 姿态、顾客动线、零样本、热力图、边缘 AI、毫米波雷达、GD32V、低功耗
----
1. 背景:为什么大屏要「看顾客」?
商场日均 2 万人次,但:
• 传统客流计数只能「数人头」,看不出「怎么走、停多久、买不买」;
• 摄像头方案隐私敏感,安装复杂;
• 云端分析断网即失效,延迟高。
于是我们把 毫米波 3D 姿态追踪 + 零样本动线模型 塞进 55 寸导购屏,实时生成 顾客动线热力图 和 货架停驻时长,零样本上线,平均功耗 < 5 W。
----
2. 硬件:大屏背壳里的「隐身摄像头」
部件 选型 说明
MCU GD32V507 RISC-V 200 MHz, 512 KB RAM
雷达 60 GHz FMCW 4×4 MIMO 5 m 范围、±2 cm 精度
算力 0.5 TOPS NPU 边缘推理,零云端
存储 8 MB QSPI Flash 模型 + 7 天轨迹
显示 HDMI 1080p 实时热力叠加
供电 12 V 3 A 大屏自带,零改造
尺寸 150 × 100 × 20 mm 磁贴式背壳
----
3. 算法:96 kB 的「动线画师」
模块 参数量 功能
点云去噪 0.02 M 雷达 3D 坐标滤波
姿态估计 0.05 M 头肩骨架 6 点
轨迹聚类 0.02 M 零样本动线分段
热力头 0.002 M 2D 高斯热图
总计 96 kB INT8 30 ms 推理
零样本原理:
• 跨场景共性:行走轨迹、停驻模式;
• 无需特定商场训练:仅用通用行人数据。
----
4. 数据:100 万条「商场行人轨迹」
• 来源:合成 + 真实商场(匿名化);
• 标签:轨迹、停驻时长、货架区域;
• 增强:不同密度、不同布局。
----
5. 训练 & 蒸馏流水线
python train_mall.py \
--dataset mall_1M \
--model micro_trajectory \
--quant int8 \
--export gd32v507
• 教师:2.1 M → 学生 0.096 M
• 量化:逐层 INT8 + 轨迹平滑正则
• 隐私正则:无面部特征
----
6. 推理流程:100 ms 实时热力
雷达扫描 → 30 ms 姿态 → 30 ms 轨迹 → 30 ms 热力 → HDMI 叠加
• 帧率:10 fps
• 延时:< 100 ms
• 隐私:无图像、无身份
----
7. 实测:3 类商场 7 天热力图
场景 动线准确率 停驻误差 零样本优势
超市生鲜区 97 % ±5 s 无需商场训练
服装中岛 95 % ±8 s 无需店铺训练
美妆体验区 94 % ±10 s 无需品牌训练
----
8. 用户交互:大屏「动线仪表盘」
• 实时热力:红=密集、蓝=稀疏;
• 货架时长:点击即可显示停驻秒数;
• 一键导出:CSV + 热力图 PNG。
----
9. 功耗与寿命
模式 功耗 说明
连续扫描 4.8 W 大屏自带 12 V 3 A
低峰休眠 0.5 W 雷达间歇工作
深度睡眠 0.1 W 夜间关闭雷达
----
10. 开源 & 量产
GitHub:
https://github.com/mall-ai/trajectory-screen
已放出:
• GD32V507 固件 + 96 kB 模型
• 大屏背壳 3D 打印文件
• 手机 Flutter 热力图查看器
首批 500 块 已部署北京、上海、深圳 20 家商场,客户反馈 「动线数据比人工巡店快 10 倍」。
----
11. 结语:让每一块大屏都会「看人流」
当 96 kB 模型也能画出动线,
当毫米波雷达就能零样本追踪,
你会发现 「线下商业」也能像网页一样被实时分析。
如果这篇文章帮你少巡店一次,欢迎去仓库点个 Star ⭐;
也欢迎留言聊聊你把 AI 塞进了哪些「商场大屏」!