- 博客(337)
- 收藏
- 关注
原创 把 AI 塞进「电梯按钮」——基于 64 kB 零样本声纹的离线故障预测按钮
《64kB零样本声纹AI实现电梯按钮故障预警》摘要:为解决全国700万台电梯按钮年故障率0.3%的痛点,团队研发了基于RISC-V芯片GD32V303的离线AI方案。该方案将64kB微型声纹模型(含0.05M声学特征+0.012M One-Class SVM)集成至普通按钮,通过骨传导麦克风采集16kHz声纹,实现20ms内完成零样本故障检测(无需针对不同按钮训练)。实测显示对塑料/金属/触屏等按钮的故障预警准确率达96-98%,提前7天发现卡滞/氧化问题,功耗仅1.2W且完全断网可用。
2025-09-09 09:39:47
100
原创 把 AI 塞进「邮票」——基于 32 kB 零样本气味指纹的离线冷链监控贴片
本文提出了一种零样本冷链监控方案,通过邮票大小的0.15mm薄贴片实现生鲜腐败检测。该方案采用RISC-V芯片和4通道气体传感器,仅需32kB模型即可离线识别乙烯/氨等腐败特征,无需特定货物训练。NFC场取电实现永久续航,成本低至1.2元/片。实测在草莓、三文鱼、疫苗等跨品类测试中准确率达94-98%,提前6-18小时预警。该技术解决了传统冷链监控依赖云端、需重复标定等问题,已开源硬件设计并量产500万片,为冷链物流提供可靠的低成本AI解决方案。
2025-09-09 09:38:06
193
原创 把 AI 塞进「机械臂」——基于 64 kB 零样本扭矩大师的离线故障预测螺丝刀
本文介绍了一种创新性的智能螺丝刀系统,通过嵌入式AI技术实现零样本扭矩预测。系统采用RISC-V架构MCU,集成64kB轻量级TCN模型,可在50微秒内完成扭矩和故障预测,误差小于2%。该方案无需针对不同螺丝进行单独训练,通过磁编码器+电流传感器间接测量扭矩,并支持离线运行。硬件设计完全嵌入标准刀柄(φ30×80mm),配备OLED扭矩显示和故障预警功能。实测显示,该系统对多种材质螺丝的扭矩预测准确率达96-98%,已实现量产。开源固件和3D打印外壳,为柔性制造提供新思路。
2025-09-08 09:10:05
587
原创 把 AI 塞进「公交卡」——基于 32 kB 零样本气味指纹的离线冷链监控贴片
研发团队推出全球首款零样本冷链监控贴片,仅0.15mm厚、1.2元成本,集成RISC-V芯片与4通道气体传感器。通过32kB微型AI模型(整合One-Class SVM算法)实现无训练跨品类腐败检测,准确率超94%。采用NFC无源供电方案,手机扫码2ms即获结果,解决传统冷链监控断网失效难题。实测对草莓、三文鱼、疫苗等实现12-18小时提前预警,开源固件与模型已支持量产,首批500万张投入市场。该技术将AI气味识别压缩至邮票大小,重新定义离线冷链监控标准。
2025-09-08 09:05:42
364
原创 把 AI 塞进「机械臂」——基于 64 kB 零样本扭矩大师的离线故障预测螺丝刀
《零样本AI螺丝刀:64kB模型实现2%扭矩误差》摘要:针对装配线扭矩控制痛点(松脱/滑牙、标定繁琐、依赖人工经验),研发团队将微型AI模型(64kB)嵌入RISC-V电动螺丝刀,通过磁编码器+电流传感器实现零样本扭矩预测。核心创新包括:1)TCN-Lite算法实现50μs推理;2)无需特定螺丝训练(M3-M8通用);3)集成故障预警(准确率≥96%)。实测7天产线误差<2%,支持CAN-FD通信和U盘数据导出,已开源固件并量产万把。该方案突破传统工具智能化改造限制,为柔性制造提供新范式。
2025-09-04 09:51:26
365
原创 把 AI 塞进「路灯灯头」——基于 64 kB 零样本车流预测的地段级节能哨兵
《基于TinyML的智能路灯车流预测系统》开发了一款集成毫米波雷达和RISC-V芯片的边缘AI设备,将64kB零样本车流模型植入路灯灯头,实现5分钟车流预测与自适应调光。该方案采用60GHz FMCW雷达和LoRa通信,在断网情况下仍能通过TCN-Lite模型实现96%预测准确率,平均节能42%。系统支持256级PWM调光,10ms延迟响应,已在三个城市部署1万盏,年省电1800万度。开源硬件设计包含GD32V507固件和3D打印文件,为城市路灯智能化提供低成本解决方案。
2025-09-04 09:47:17
294
原创 把 AI 塞进「邮票」——基于 32 kB 零样本气味指纹的离线冷链监控贴片
摘要: 针对冷链运输中25%生鲜因温控失效报废的问题,研发团队推出厚度仅0.15mm的“气味邮票”。采用RISC-V芯片(CH32V003)与4通道MEMS气体传感器,通过NFC取电实现零电池设计,内置32kB零样本气味模型(含乙烯/氨等特征检测),可离线识别腐败/冻伤,准确率达94%-98%。该方案成本1.2元,支持-20~60℃自适应,7天数据存储,通过LED灯语和手机NFC交互,已量产500万片。开源固件与模型,实现断网场景下的可靠监测。
2025-09-03 09:18:43
272
原创 把 AI 塞进「智能跳绳」——基于 64 kB 零样本卡路里估算器的云端 Free 方案
本文介绍了一种基于TinyML的离线跳绳卡路里估算方案,将64kB零样本模型嵌入标准跳绳手柄。采用RISC-V芯片(144MHz)+6轴IMU,5ms完成推理,误差<3%,支持7-70岁人群无需训练即用。系统配备0.96"OLED屏和BLE5.0,20天续航,已开源CH32V203固件和3D打印设计。核心创新在于:1)通过动作共性实现零样本;2)64kB TCN-Lite模型量化;3)5秒实时更新。
2025-09-03 09:11:09
292
原创 把 AI 塞进「公交卡」——基于 32 kB 模型的零样本离线乘车验证片
摘要:针对公交卡离线无法验证的问题,研发出一种基于RISC-V芯片GD32E230的0.2mm超薄AI贴片方案。该方案采用32kB零样本验证模型,通过NFC取电实现永久续航,支持离线身份验证、票种识别和余额检查,5ms内完成验证且误检率<0.1%。实测在4个城市离线状态下通过率达99.8%以上,成本仅3元/片。开源硬件设计及32kB TinyML模型,首批100万张已量产,解决了传统公交卡依赖网络、换系统需重录数据等痛点。
2025-09-02 11:47:26
372
原创 把 AI 塞进「机械臂」——基于 64 kB 模型的零样本抓取姿态微调器
摘要:本文介绍了一种用于机械臂的零样本抓取系统,通过集成64kB姿态微调模型到硬币大小的边缘设备(GD32V RISC-V芯片),实现无需CAD模型和示教的自适应抓取。该系统采用720p全局快门相机和6轴IMU,5ms内完成6-DoF姿态计算,抓取误差<1mm。实测显示,对螺栓、齿轮等零件抓取成功率提升4%-11%,功耗仅1.2W。开源方案含固件、3D支架和上位机工具,已部署于3C产线,实现"换产品0示教"。
2025-09-02 11:43:09
302
原创 把 AI 塞进「商场导购屏」——基于 3D 姿态追踪的零样本顾客动线热力图
摘要: 本文介绍了一种基于毫米波雷达的边缘AI方案,将3D姿态追踪与零样本动线模型集成至55寸导购屏,实现商场顾客动线分析与热力图生成。系统采用低功耗设计(<5W),搭载GD32V RISC-V芯片与60GHz雷达,通过96kB轻量化模型实现实时轨迹聚类与热力渲染(延时<100ms),支持零样本部署,无需特定场景训练。实测显示动线准确率超94%,停驻误差±10秒内,且无隐私数据采集。硬件可磁吸式安装,开源固件与模型已量产部署,助力线下商业的数字化运营优化。
2025-09-01 11:43:42
1499
原创 把 AI 塞进「智能插座」——基于 64 kB 模型的零样本家电故障哨兵
摘要:本文介绍了一款基于TinyML的零样本智能故障检测插座,采用ESP32-C3芯片和64kB轻量级模型,通过实时分析电流波形预测家电故障。该方案无需云端支持,能在10ms内完成故障分类,平均提前10分钟预警,支持空调、冰箱等5类家电的零样本检测。硬件采用标准86盒设计,集成Wi-Fi/BLE通信和220V自取电功能,功耗仅25mA。开源项目已量产10万台,实测可准确识别压缩机卡死、电机短路等故障,有效预防电气火灾。
2025-09-01 11:39:37
664
原创 把 AI 塞进「台式机电源」——基于 96 kB 模型的实时功耗预测大师
【微型AI赋能PC电源,实时功耗预测节能新方案】针对高功耗PC(如电竞、AI训练)的能耗管理痛点,研究团队在ATX电源内置96kB TinyML模型(基于RISC-V GD32V203芯片),实现1ms周期、零样本上线的CPU/GPU/整机功耗预测(平均误差<3%)。该方案通过3路电流采样和微型TCN网络,在25×20mm板卡上完成实时推理,年省电达180kWh。开源项目含固件、3D打印设计和跨平台工具,量产实测显示游戏/渲染场景误差<2.5W,已获3万片订单。
2025-08-31 16:55:45
436
原创 把 AI 塞进「智能跳绳」——基于 MEMS 传感器的零样本卡路里估算器
智能跳绳卡路里估算系统:MEMS+TinyML边缘AI方案 针对传统跳绳设备误差大、依赖网络等问题,本方案采用RISC-V MCU(GD32V303)和6轴IMU构建低功耗智能跳绳。通过零样本TinyML模型(72KB INT8)实现实时卡路里估算(误差<5%),支持跨场景(室内/户外/儿童)免校准。硬件集成BLE5.0、OLED屏和300mAh电池(续航20天),算法基于TCN-Lite提取运动特征,经10万次跳绳数据训练与量化蒸馏。
2025-08-31 16:52:48
303
原创 把 AI 塞进「智能跳绳」——基于 MEMS 传感器的零样本卡路里估算器
于是我们把 MEMS 三轴 + 零样本 TinyML 塞进 一根跳绳手柄,实时「摇绳算卡」,零样本上线,平均误差 < 5 %。// 50 ms 周期。标签:MEMS、卡路里估算、零样本、智能跳绳、TinyML、RISC-V、低功耗、边缘 AI。TCN-Lite 0.02 M 卡路里回归 0-1000 kcal/h。尺寸 φ28 mm × 120 mm 标准手柄大小。通信 BLE 5.0 手机 App 同步。• 动作共性:摇绳周期、能量谱、角速度包络;
2025-08-29 22:04:31
481
原创 把 AI 塞进「智能门锁」——基于指纹和语音双模态的零样本离线门禁系统
于是我们把 指纹 + 语音双模态 + 零样本学习 塞进 智能门锁,零样本上线,离线识别,平均解锁时间 < 1 秒。指纹采样 + 语音采样 → 200 ms 推理 → BLE 传输结果 → 手机 App 提示。标签:指纹识别、语音识别、零样本、智能门锁、TinyML、RISC-V、低功耗、边缘 AI。指纹特征提取 0.05 M 1 s 指纹 → 64 维特征。双模态融合 0.02 M 指纹 + 语音 → 综合判断。4. 数据:10 万人的「指纹 + 语音数据」办公室环境 99.2 % 无需办公室成员预录入。
2025-08-29 16:41:03
355
原创 把 AI 塞进「智能手环」——基于心率变异的零样本压力监测手环
本文介绍了一款基于RISC-V和TinyML的智能手环,通过心率变异分析实现零样本压力监测。该手环采用GD32V183 MCU和PPG传感器,内置64KB的量化CNN模型,可在100ms内完成压力分类(低/中/高)。系统通过10万人数据训练,实现98.5%准确率,支持10秒快速检测,功耗仅5mA(间隔检测模式)。开源硬件方案包含3D模具和Flutter App,已量产10万只,为心理健康提供边缘AI解决方案。
2025-08-28 23:37:47
327
原创 把 AI 塞进「智能水杯」——基于声学指纹的零样本水质检测杯
基于声学指纹和TinyML的智能水杯可实现实时水质检测,采用RISC-V架构GD32V183芯片和64KB微型CNN模型(精度>96%),10秒完成超声波检测+100ms推理,支持零样本学习。该方案集成40kHz换能器和MEMS麦克风,30天续航,误判率<2%,已在GitHub开源固件和3D模具,量产10万只。突破传统水质检测高成本、低便携性痛点,实现边缘AI的健康守护。
2025-08-28 23:34:29
357
原创 把 AI 变成「会呼吸的保鲜盒」——基于 MEMS 气体指纹的零样本食物腐败预警标签
本研究开发了一款基于MEMS气体阵列和TinyML技术的零样本腐败预警保鲜标签,厚度仅0.3mm,集成6通道MOS传感器(检测乙烯/氨等气体)和RISC-V芯片(32kB量化模型)。该标签通过零样本分类器实现跨食材腐败检测(准确率93-98%),无需预训练特定食材数据,采用BLE/RFID通信和印刷纸电池(续航1-5年)。实测显示可提前8-24小时预警食材腐败,超市应用减少30%食物浪费。硬件方案(CH32V003 MCU+FlexFlash存储)和50万条腐败曲线数据集已开源
2025-08-27 17:22:17
387
原创 把 AI 变成「会呼吸的保鲜盒」——基于 MEMS 气体指纹的零样本食物腐败预警标签
《可呼吸保鲜标签:基于MEMS气体阵列的零样本腐败预警方案》 针对全球每年因无法准确判断食物腐败导致的巨量浪费问题,我们开发了一款0.3mm厚的智能保鲜标签。该标签集成6通道MEMS气体传感器和RISC-V芯片,通过零样本TinyML模型(仅32kB)实时检测乙烯/氨/硫化氢等腐败特征气体,无需特定食材训练即可实现96%以上的预警准确率。采用BLE+RFID双模通信和印刷纸电池供电,以10秒间隔采样,1年免维护运行。实测显示,该方案能提前8-24小时预警多种食材腐败,已量产应用使超市丢弃量减少30%。
2025-08-27 17:16:36
284
原创 把 AI 塞进「盲文点显器」——基于触觉反馈的离线双向翻译笔
摘要:本文介绍了一款钢笔大小的盲文双向翻译笔,采用ESP32-C3芯片和72kB轻量化AI模型,实现离线OCR文字识别(准确率98.7%)与盲文点显(正确率99.5%)的双向转换。设备集成8单元压电陶瓷点显器和骨传导音频,支持印刷/手写文本的触觉反馈与语音播报,300ms完成翻译循环,续航达7天。通过50万张多语言数据集训练和模型蒸馏,将3M参数压缩至0.075M。实测显示,该设备在无网络环境下比手机读屏快3倍,首批2万支已交付公益组织使用。项目已开源硬件设计及AI模型,推动无障碍阅读技术微型化发展。
2025-08-27 17:11:02
413
原创 把 AI 塞进「邮票」——基于零样本 OCR 的超薄离线地址识别片
本文介绍了一款集成零样本OCR技术的超薄智能邮票解决方案。该邮票内置0.2mm厚芯片,采用RISC-V MCU和MEMS摄像头,通过48KB轻量化CRNN模型实现离线地址识别。核心创新包括:零样本识别无需重训、200dpi微透镜快照、光脉冲输出邮编。测试显示对中英文手写体识别率达97%以上,单次识别功耗仅12mA,纸电池可续航1年。首批100万张已交付邮政使用,分拣效率提升300%。开源项目包含固件和模型,为边缘AI在邮政领域的应用提供新思路。
2025-08-26 19:20:02
263
原创 把 AI 塞进「空调遥控器」——基于 MEMS 温湿阵列的 1 分钟极速房间热场扫描
传统空调因单点测温导致空间温差大、调温不便。为此研发一款集成8×8 MEMS温湿阵列的智能遥控器,搭载RISC-V芯片和128KB TinyML模型,60秒完成房间热场扫描与重建,通过红外精准控制送风。实测显示可降低1.5-3℃温差,节省20%-28%电量。设备采用双AAA电池供电,续航6个月,支持离线推理与3D可视化热图。项目已开源硬件固件和模型,量产10万台获用户好评,实现平方厘米级的舒适温控。
2025-08-26 19:14:46
334
原创 AI 塞进「电动螺丝刀」——基于声学指纹的零样本紧固扭矩预测
本文介绍了一种基于声学指纹的智能电动螺丝刀系统,通过ESP32-S3芯片实现边缘AI扭矩预测。该系统采用96kB轻量化模型,仅需声音信号即可实现±0.08N·m精度(满足ISO5393标准),无需传统扭矩标定。硬件集成MEMS麦克风,支持零样本部署,在手机、光伏等产线测试中使返修率降低48-62%。系统具备低功耗特性(待机1年),并开源了固件、模型及3D打印方案。该创新将AI技术融入传统工具,实现了"听声判扭"的智能化突破。
2025-08-25 19:28:14
2201
原创 把 AI 塞进「电动螺丝刀」——基于声学指纹的零样本紧固扭矩预测
本文介绍了一种基于声学指纹的智能电动螺丝刀系统,通过将微型AI模型(仅96kB)嵌入ESP32-S3芯片,实现"听声判扭"的零样本扭矩预测。该系统采用TCN-Regressor模型处理20kHz采样的声音特征,在M1.4-M6螺丝上实现<5%的误差,无需标定即可替代传统扭矩仪。硬件集成于φ30×80mm手柄内,支持BLE通信和OTA更新,在手机、光伏产线实测中使返修率下降48-62%。开源方案包含固件、模型和3D打印文件,已量产5万把,为工业质检提供边缘AI新范式。
2025-08-25 18:36:15
602
原创 把 AI 塞进「纽扣」——基于零样本声纹的离线防丢纽扣
《零样本声纹纽扣:离线防丢黑科技》摘要 本文介绍了一款集成TinyML声纹识别技术的智能防丢纽扣解决方案。该设备采用ESP32-C6 RISC-V芯片和骨传导麦克风,在64KB内存中实现零样本声纹识别,仅需3秒即可完成主人声纹注册。通过对比学习算法和50万段嘈杂环境训练数据,在94%识别率下保持低误报率(0.1次/日)。纽扣尺寸20×6mm,使用CR2032电池可达1年续航,支持BLE+UWB双模定位,成本仅19元。
2025-08-24 15:10:59
757
原创 把 AI 塞进「自行车码表」——基于 MEMS 的 3D 地形预测码表
这款智能码表采用MEMS传感器融合和TinyML技术,集成在仅60g的设备中,能提前15秒预测地形变化。硬件采用RISC-V低功耗MCU和多种传感器,运行128KB的TCN-Lite模型实现实时预测。通过10万条骑行轨迹训练后,在城市缓坡、丘陵等地形中,坡度预测误差小于0.7%,换挡建议准确率达87%以上。设备支持多种低功耗模式,最长续航2000小时,并开源了固件和3D打印方案。该方案让骑行更智能,减少功率爆表风险。
2025-08-24 15:09:05
653
原创 把 AI 塞进「自行车码表」——基于 MEMS 的 3D 地形预测码表
60g骑行码表搭载MEMS多传感器融合与TinyML技术,实现15秒地形预测。采用RISC-V低功耗MCU(GD32VW553)和0.8m高精度气压计,通过128KB量化TCN-Lite模型实时分析骑行数据(10Hz采样)。系统可提前预警坡度变化(±0.3%-0.7%误差),提供换挡建议(87%-92%准确率),续航达22小时。开源固件含3D打印方案,已众筹量产3万只,显著提升骑行预判能力。
2025-08-23 17:07:46
735
原创 把 AI 塞进「电梯按钮」——基于毫米波手势识别的零接触控制面板
摘要: 基于毫米波雷达与TinyML技术,开发了零接触电梯手势控制系统。采用ESP32-C6芯片(160MHz RISC-V)搭载60GHz FMCW雷达,实现3cm精度的手势识别。系统整合0.09M参数量CNN-GRU融合模型(64kB INT8量化),支持6类手势操作(如上下滑动、悬停等),在电梯井道环境下达到96%准确率。硬件采用标准86盒设计,兼容24V供电/CAN-Bus协议,即插即用。实测显示日均误触<0.5次,用户满意度4.7/5以上,已部署300栋楼宇,减少80%维保工时。
2025-08-23 16:58:35
522
原创 把 AI 变成「会思考的路灯」——基于自学习能耗模型的智慧路灯杆
摘要: 针对传统路灯能耗高的问题,本文提出一种基于TinyML和LoRaWAN的智慧路灯方案。通过RISC-V芯片(GD32VF103)集成光照、车流等传感器,搭载仅64KB的TCN-MLP模型实现实时能耗预测与调光控制,结合太阳能供电与IP67防护设计。实测显示,该方案在乡村、校园等场景平均节电42%,单设备阴雨续航达3天,且支持云端策略下发。开源硬件与模型已部署10万盏,年省电1.2亿度,为碳中和提供边缘AI落地范例。
2025-08-22 19:14:36
446
原创 把 AI 变成「会说话的盲道」——基于骨传导的地砖级语音导盲砖
这是一款基于TinyML技术的智能盲道地砖,专为解决1700万视障者出行难题而设计。该产品采用ESP32-C3芯片和512KB轻量级AI模型,集成毫米波雷达障碍检测和骨传导语音导航功能。通过太阳能供电和低功耗设计,可实现5年免维护运行。实测显示其障碍识别准确率达93%以上,用户满意度4.8/5分。产品已开源硬件和软件方案,并在广深地区铺设1万块,获得视障者"像有人牵着手走路"的好评。这个创新方案将AI技术与城市基础设施结合,用科技温度实现真正的无障碍出行。
2025-08-22 19:12:16
304
原创 把 AI 变成「口袋里的农业气象站」——基于 TinyML 的田间微气候预测棒
【摘要】农业物联网团队开发了一款微型"气象棒",集成了TinyML技术,通过太阳能供电和LoRa通信,实现田间微气候精准预测。该设备采用RA2E1 MCU和4路传感器,搭载仅128kB的TCN-Attn模型,可提前2小时预警暴雨、霜冻等灾害,准确率达90%以上。实测显示能减少15%农作物损失,成本仅45元,续航达30天。项目已开源硬件设计和模型,首批2万套应用于东北粮仓,为智慧农业提供了轻量化解决方案。
2025-08-21 15:16:18
926
原创 把 AI 变成「玻璃质检眼」——基于线扫扩散模型的零样本缺陷检测一体机
摘要:针对工业玻璃面板检测中传统方法需大量标注数据、易受光照影响等问题,研发了基于线扫扩散的零样本检测系统。该系统采用双阶段模型:无监督生成缺陷样本+自监督判别,仅需100张OK图即可训练,模型压缩至4.8MB后部署于边缘GPU(RTX3060),实现1秒/片的高速检测,缺陷分辨率达0.05mm。实测显示,划痕、脏污等检测IoU达81%-87%,且支持新型缺陷零样本识别。系统集成于鞋盒大小工控机,已开源核心代码并商用18条产线,实现"换型号1小时上线"的极致效率。
2025-08-21 15:12:29
237
原创 把 AI 酿酒师塞进「发酵罐」——基于多模态时序模型的精酿啤酒工艺自整定系统
摘要: 针对精酿啤酒发酵过程不可控、人工监测低效等问题,研发团队开发了一套基于边缘AI的智能发酵系统。该系统搭载ESP32-S3芯片和6路传感器,通过1.2MB轻量化时序模型(TCN-GRU融合)实时预测糖度和酵母活性,实现±0.1℃高精度温控闭环。实测显示,AI控制较人工误差降低75%,发酵时长缩短5-8小时,成品率提升7%。硬件成本仅180元,支持手机看板监控和参数复刻,开源模型与数据已发布。未来将扩展多罐协同和风味预测功能,推动精酿生产科学化。
2025-08-20 13:27:25
480
原创 把 AI 塞进行李箱——基于生成式折叠网络的「一键打包」智能收纳盒
摘要: 针对旅行收纳痛点,一款基于生成式AI的智能行李箱解决方案应运而生。该方案采用A5卡片大小的硬件(ESP32-S3主控+毫米波雷达),搭载1.9MB轻量化空间折叠网络,通过3D点云感知和离线推理,2秒生成最优装箱方案。实测显示,AI装箱比人工提升16%空间利用率,降低94%易碎风险,续航达9小时。支持LED/AR/语音交互,已开源模型与数据,首批量产5万张。技术核心在于50万次虚拟装箱训练的TinyML模型,将复杂3D收纳问题转化为边缘设备可解的“俄罗斯方块”。
2025-08-20 13:22:49
435
原创 把 AI 变成「图书馆管理员」——基于检索增强的离线图书语音导航小盒子
本文介绍了一款基于ESP32-S3的离线图书语音导航系统,旨在解决高校图书馆读者找书难的痛点。该系统将检索增强大模型(RAG)和离线TTS语音合成技术集成到巴掌大小的盒子中,可磁吸式安装在书架侧面。硬件采用低功耗设计,包含16MB存储空间存放20万本书目索引。系统支持语音问答,通过双塔向量检索模型(仅3MB)实现2秒内完成从语音输入到导航回答的闭环,准确率达94%-98%。目前已开源并在5所高校部署,使咨询量下降60%。
2025-08-19 19:34:37
498
原创 把 AI 天气预报塞进「打火机」——基于时空扩散模型的微型气象站
《微型气象站:35g打火机内的离线天气预警系统》摘要 针对户外场景中云端API失效、传统设备笨重等问题,研究团队开发了一款仅35g的微型气象站。该设备采用RISC-V架构MCU和BME688传感器,集成1.8MB的时空扩散MiniNet模型,可在边缘端实现100米精度的30分钟降水预测。通过INT8量化和功耗优化技术,设备在500mAh电池支持下可实现14天续航。实测显示其降水预警准确率达88%-93%,并通过LED、语音播报等极简方式交互。
2025-08-19 18:12:11
935
原创 把 AI 质检塞进「灯罩」——基于扩散缺陷生成器的零样本工业检测系统
《基于扩散模型的零样本缺陷检测系统在工业质检中的应用》介绍了一种创新的无监督缺陷检测方案。针对3C外壳产线质检难题,研究团队开发了DefectDiffusion-Lite模型,仅需100张OK图即可自动生成缺陷样本并完成检测。系统采用轻量级架构(17.6M参数),集成RTX4060边缘GPU,实现100ms内完成2k图像检测,漏检率<0.3%。创新性地将扩散模型同时用于缺陷生成与检测,解决了传统方法需要大量标注数据的问题。该方案已开源并落地12条产线,支持产品切换1分钟内完成校准,显著提升质检效率。
2025-08-18 17:24:54
2580
原创 把 AI 变成「时间管理魔法师」——基于 LLM 的离线日程语义引擎 0.95 MB 塞进手环
《TinyLLM:让智能手环听懂自然语言的超低功耗方案》针对智能手环无法离线解析复杂日程的问题,提出基于RISC-V的端侧解决方案。通过研发仅0.95MB的微型语言模型(2层128维Transformer,int8量化),在64KB Flash/2KB RAM的CH32V003芯片上实现语义解析,将"明早不下雨跑步"等语句转为结构化日程。采用关键词蒸馏和BLE同步技术,在90mAh电池下保持14天续航,实测准确率达94-96%。项目已开源并量产,证明边缘设备也能实现高效自然语言理解。
2025-08-17 14:33:07
831
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人