
AI
文章平均质量分 85
修一呀
定期分享学习成果,欢迎关注一起学习QAQ
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
[yolo11微调项目实战]基于VisDrone-DET的YOLO11 + CBAM + Transformer + ViT + MobileViT + TensorRT 一站式教程(含算力租赁)
本教程将带领大家完成一个基于 VisDrone-DET 数据集的 YOLO11 完整项目实战,涵盖从环境搭建、模型训练、Transformer 集成到最终利用 TensorRT 加速的全流程。考虑到训练对算力的较高要求,还会介绍算力租赁的相关操作,即使是硬件配置有限的同学也能顺利完成项目。原创 2025-08-06 08:54:01 · 1547 阅读 · 0 评论 -
【数据标注】详解使用 Labelimg 进行数据标注的 Conda 环境搭建与操作流程
本文介绍了使用Conda为LabelImg创建独立环境的完整流程。首先解释了独立环境能避免依赖冲突的优势,然后详细演示了从检查Conda安装、创建Python3.9环境到安装LabelImg的具体步骤。最后提供了LabelImg的基本使用教程,包括启动方法、标注操作快捷键以及PascalVOC/YOLO格式转换说明。通过这套标准化流程,开发者可以快速搭建稳定的图像标注环境,为计算机视觉项目做好准备。原创 2025-07-28 20:28:32 · 1133 阅读 · 0 评论 -
【语言模型训练】基于 LSTM 的古诗生成模型:从原理到实现
本项目实现了一个基于LSTM的古诗自动生成模型。通过构建字符级别的映射表,将古诗文本转换为模型可处理的数字形式。模型采用两层LSTM网络结构,能有效捕捉古诗的语言模式和韵律特征。训练过程中使用Adam优化器和学习率调度器优化模型参数。生成阶段通过温度参数控制随机性,采用Top-K采样策略提高生成质量。最终模型能够根据起始词语生成符合古诗风格的诗句,并支持调整生成结果的随机性和长度。项目完整实现了从数据处理、模型训练到古诗生成的全流程,提供了完整的Python源码,可直接运行测试。原创 2025-07-25 15:52:25 · 1535 阅读 · 0 评论 -
[语言模型训练]基于 PyTorch 的双向 LSTM 文本分类器实现:基于旅店的评论分类语言模型
本文介绍了使用PyTorch实现基于双向LSTM的酒店评论情感分类模型。从数据预处理(中文分词、停用词过滤、文本向量化)到模型构建(双向LSTM+池化层),详细说明了每个步骤的实现方法。模型采用交叉熵损失函数,加入学习率调度和早停机制优化训练过程。代码包含完整的训练、评估和预测流程,自动处理目录创建和数据检查,可直接运行。最终模型能对酒店评论进行正面/负面二分类,测试准确率可达较高水平。文中还提供了数据集格式示例和生成方法,方便读者快速复现实验。原创 2025-07-24 20:13:05 · 762 阅读 · 0 评论 -
【混淆矩阵】PyTorch 实现 MNIST 模型混淆矩阵生成:从代码到可视化全流程
本文详细介绍了使用PyTorch和MNIST数据集生成混淆矩阵的完整流程。首先定义了一个简化版LeNet网络模型,通过验证集推理获取预测结果和真实标签;然后利用sklearn.metrics计算混淆矩阵,并通过matplotlib进行可视化展示。文章提供了可直接运行的完整代码,包括模型加载、数据预处理、结果收集和可视化等步骤。混淆矩阵能有效识别模型在数字识别中的易混淆类别(如6和9),帮助定位模型弱点并指导优化方向。该方法适用于各类分类任务,为模型性能评估提供了直观可靠的工具。原创 2025-07-21 19:33:21 · 679 阅读 · 0 评论 -
【计算机视觉模型训练】基于 SE 注意力机制的 GoogleNet模型训练【识别蝴蝶数据集】【6500张图片75分类】
本文提出一种融合SE注意力机制的改进GoogleNet模型,用于蝴蝶种类识别任务。该模型结合GoogleNet的多尺度特征提取能力和SE通道注意力机制,通过SE模块动态学习特征通道权重,增强关键特征抑制噪声。具体实现包括:1)构建SEBlock模块,通过全局平均池化和全连接层学习通道权重;2)将SE机制嵌入Inception模块,形成多分支并行结构;3)采用迁移学习策略初始化模型权重,冻结底层参数提升训练效率。实验结果表明,该模型在蝴蝶分类任务中表现优异,准确率显著提升。文章提供了完整代码实现,涵盖数据加载原创 2025-07-21 15:42:07 · 1422 阅读 · 0 评论 -
【模型转换】PyTorch 模型转 ONNX 并部署推理全流程[以数字识别模型为例]
本文介绍了将PyTorch模型转换为ONNX格式的完整流程。以LeNet-5结构的MNIST手写数字识别模型为例,详细说明了模型定义、格式转换和推理验证三个关键步骤。重点讲解了如何使用torch.onnx.export进行模型转换,包括输入示例设置、动态维度配置等注意事项,并演示了通过ONNXRuntime进行推理验证的方法。该转换过程使模型能够在不同深度学习框架和平台间实现互操作,为模型部署提供了便利。文章还提供了完整的Python实现代码和相关环境配置说明。原创 2025-07-17 16:28:07 · 729 阅读 · 0 评论 -
[TensorBoard]PyTorch 中 TensorBoard 的全方位使用指南:从入门到实战(附完整 MNIST 代码案例)
本文介绍了TensorBoard可视化工具在PyTorch框架下的应用,通过MNIST数字识别案例演示了其核心功能。主要内容包括:1)通过SummaryWriter记录训练日志;2)使用add_graph可视化模型结构;3)利用add_image展示训练样本;4)通过add_scalars跟踪损失和准确率等指标。文章提供了完整的可运行代码,包含数据预处理、模型训练、验证和测试流程,并自动创建项目目录结构。案例展示了如何利用TensorBoard监控训练过程、分析模型性能,帮助开发者更直观地理解模型行为和数据原创 2025-07-16 16:26:14 · 901 阅读 · 0 评论 -
深度学习利用 PyTorch 导入构建图像数据集
本文介绍了PyTorch处理图像数据的两种方法。第一种是自定义数据集类,通过继承Dataset类实现数据的灵活读取与预处理,适合特殊需求场景,但代码量较大。第二种是使用ImageFolder工具,能快速加载按类别分文件夹存放的图像数据,自动处理标签分配,代码简洁但灵活性有限。两种方法各有优势,开发者可根据实际需求选择合适的数据加载方式。文章通过代码示例详细展示了两种方法的实现过程及其适用场景。原创 2025-07-09 17:22:29 · 453 阅读 · 0 评论 -
深度学习基于PyTorch 实现线性回归:从手动梯度下降到框架 API
本文介绍了使用PyTorch实现线性回归的两种方法。第一种是手动实现梯度下降优化,包括数据准备、参数初始化、训练循环(前向传播、损失计算、反向传播和参数更新)的完整流程。第二种方法利用PyTorch内置API,通过nn.Linear定义模型、nn.MSELoss计算损失、optim.SGD优化参数,简化了实现过程。两种方案都成功拟合了y=2x+1的线性关系,验证了PyTorch在机器学习基础模型实现中的高效性和灵活性。原创 2025-07-08 19:06:19 · 524 阅读 · 0 评论 -
纯干货,无废话CUDA、cuDNN、 PyTorch 环境搭建教程
本文详细介绍了深度学习开发环境的配置步骤。首先通过nvidia-smi命令查看显卡支持的CUDA版本并安装对应版本,然后下载匹配的cuDNN。接着安装Anaconda并创建Python环境,最后安装与CUDA版本兼容的PyTorch(如CUDA 12.9对应cu121)。最终通过运行测试代码验证环境是否配置成功,检查PyTorch版本、CUDA可用性及cuDNN版本是否正确。该指南帮助开发者快速搭建完整的深度学习开发环境。原创 2025-07-02 09:15:18 · 583 阅读 · 0 评论