
RAG实战指南
文章平均质量分 95
本专栏深入剖析RAG(检索增强生成)技术的核心原理与工程实践,涵盖向量检索、知识库构建、大模型集成等关键模块。通过真实案例与代码示例,手把手教你搭建高性能RAG系统,解决大模型幻觉、时效性不足等痛点。无论是提升现有LLM应用效果,还是开发企业级知识助手,本专栏都将提供可落地的优化策略和前沿技术方案。
在未来等你
如果所有的付出都没有回报,那还让我怎么坚持
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
RAG实战指南 Day 30:RAG前沿技术与未来展望
自适应检索机制及其实现多模态RAG系统的构建方法自我优化RAG框架的设计金融研究平台的实际应用案例回顾整个"RAG实战指南"系列,我们已经全面覆盖了RAG系统的各个方面:| 技术领域 | 关键知识点 || 基础框架 | RAG架构、LangChain、LlamaIndex || 数据处理 | 多源数据导入、文本解析、质量控制 || 文本分块 | 语义分块、领域特定分块策略 || 向量检索 | 向量数据库选择、相似度算法、大规模优化 |原创 2025-07-31 17:22:44 · 736 阅读 · 0 评论 -
RAG实战指南 Day 27:端到端评估框架实现
多维度评估体系:检索、生成、性能三位一体混合评估方法:自动指标与LLM辅助评估结合可扩展框架设计:支持自定义指标和数据集闭环优化流程:评估结果直接指导系统改进。原创 2025-07-30 20:49:57 · 1142 阅读 · 0 评论 -
RAG实战指南 Day 28:RAG系统缓存与性能优化
多级缓存架构:查询/语义/嵌入多层级缓存向量检索优化:FAISS高效相似度搜索模型推理加速:量化/蒸馏技术应用自适应策略:动态调整缓存参数。原创 2025-07-30 21:50:49 · 902 阅读 · 0 评论 -
RAG实战指南 Day 29:RAG系统成本控制与规模化
成本监控:实时跟踪各组件资源消耗弹性伸缩:基于负载动态调整资源混合部署:组合不同成本效益的服务分级策略:区分处理热点/冷数据。原创 2025-07-30 23:13:32 · 841 阅读 · 0 评论 -
RAG实战指南 Day 26:RAG系统评估指标与方法
RAG系统需要从检索、生成、性能和体验四个维度全面评估自动指标(如P@K、ROUGE)与人工评估需要结合使用不同行业(如金融、医疗)需要定制特定的评估指标。原创 2025-07-29 20:48:59 · 1205 阅读 · 0 评论 -
RAG实战指南 Day 25:响应生成策略与幻觉减少
核心机制:知识锚定、多步验证、置信度过滤实现架构:可扩展的生成-验证工作流领域适配:医疗场景的专用优化方案性能权衡:准确性与延迟的平衡策略幻觉控制需要多层次防御策略领域专用模板能显著提升可靠性监控系统是持续优化的基础明天的主题是【Day 26: RAG系统评估指标与方法】,我们将系统介绍如何科学评估RAG系统的整体性能。原创 2025-07-28 17:49:26 · 1078 阅读 · 0 评论 -
RAG实战指南 Day 24:上下文构建与提示工程
学习了多种上下文构建策略及其适用场景实现了完整的提示构建器类,支持多种高级技术分析了法律咨询系统的实际案例讨论了不同技术的优缺点核心技术要点上下文选择比数量更重要结构化提示显著提升生成质量领域特定的提示设计是关键多轮和分步提示适合复杂问题实践建议从简单策略开始逐步优化针对领域特点定制提示模板建立提示版本控制系统持续监控生成质量明天我们将探讨【Day 25: 响应生成策略与幻觉减少】,学习如何优化RAG系统的最终输出质量,减少错误信息生成。原创 2025-07-25 17:37:22 · 1183 阅读 · 0 评论 -
RAG实战指南 Day 23:检索后处理与结果再排序
核心知识点再排序解决原始检索结果的四大问题:相关性漂移、信息碎片化、冗余重复和时效错位两类核心算法:基于特征工程的轻量排序和基于交叉编码器的深度排序混合排序架构设计:召回→粗排→精排的三阶段流水线实际应用建议通用场景优先使用交叉编码器高并发热数据实施异步再排序垂直领域必须加入领域特征性能优化技巧对Top100结果使用轻量排序对Top20使用深度模型缓存高频查询的排序结果明日预告。原创 2025-07-24 17:59:47 · 835 阅读 · 0 评论 -
RAG实战指南 Day 22:混合检索策略实现
混合检索原理:理解多种检索方法结合的价值融合策略:掌握早期、中期和晚期融合技术实现技术:学会使用LangChain等工具实现混合检索性能优化:了解分数归一化和重排序技术应用场景:认识混合检索在复杂查询中的优势。原创 2025-07-23 17:53:17 · 654 阅读 · 0 评论 -
RAG实战指南 Day 21:检索前处理与查询重写技术
核心技术:查询清洗、意图识别、实体提取、查询重写和扩展实现方法:基于规则和基于LLM的两种主要技术路线系统集成:如何将查询预处理集成到现有RAG流程中电商案例:领域专用预处理器的实现和效果查询预处理是提升RAG系统效果的关键环节不同场景需要采用不同的预处理策略规则方法和LLM方法各有优劣,可组合使用明天我们将探讨【Day 22: 混合检索策略实现】,学习如何结合多种检索方法构建更强大的RAG系统。原创 2025-07-22 17:57:44 · 1163 阅读 · 0 评论 -
RAG实战指南 Day 20:大规模向量索引优化技术
大规模向量索引面临内存、计算和精度三方面的挑战HNSW适合高精度需求,PQ适合内存敏感场景分布式架构是处理亿级向量的必由之路量化技术可显著降低内存占用,但会引入精度损失。原创 2025-07-21 17:47:36 · 1269 阅读 · 0 评论 -
RAG实战指南 Day 19:相似度算法与检索策略优化
核心相似度算法:余弦相似度、点积、欧氏距离等的实现与优化混合检索策略:如何组合多种算法提升检索质量性能优化技术:批量查询、两阶段检索等加速方法电商搜索案例:展示了在实际业务中的综合应用关键技术点相似度计算是RAG检索的核心组件混合策略能结合不同算法的优势两阶段检索平衡速度与精度业务规则与机器学习结合可获得最佳效果明天我们将探讨【Day 20: 大规模向量索引优化技术】,学习如何处理十亿级向量的高效索引和检索问题。原创 2025-07-18 17:42:17 · 1058 阅读 · 0 评论 -
RAG实战指南 Day 18:Chroma、Milvus与Pinecone实战对比
技术特性掌握:了解每种数据库的架构特点和适用场景实战能力:通过完整代码示例掌握各数据库的集成方法选型策略:学会根据项目需求选择最优解决方案优化技巧:掌握提高向量检索性能的实用方法明天我们将进入第19天【相似度算法与检索策略优化】,探讨如何通过算法选择和参数调优进一步提升RAG系统的检索质量。原创 2025-07-17 17:41:51 · 1235 阅读 · 0 评论 -
RAG实战指南 Day 17:Postgres与pgvector实战
- 创建包含向量列的表embedding vector(384), -- 假设使用384维的嵌入模型今天,我们深入探讨了Postgres与pgvector在RAG系统中的实战应用。pgvector的安装配置与基本操作高效向量搜索的实现与优化策略混合查询(传统SQL+向量搜索)的实现方式企业级应用中的性能优化技巧需要同时处理结构化数据和向量搜索的混合应用已有PostgreSQL基础设施,希望最小化新组件引入对数据一致性和事务有较高要求的业务系统。原创 2025-07-16 17:27:59 · 1009 阅读 · 0 评论 -
RAG实战指南 Day 16:向量数据库类型与选择指南
向量数据库的核心能力是高效近似最近邻搜索Chroma适合原型开发,Milvus/Pinecone适合生产环境混合查询(向量+属性过滤)是RAG系统的常见需求数据规模超过100万时需要考虑分布式架构。原创 2025-07-15 18:37:14 · 652 阅读 · 0 评论 -
RAG实战指南 Day 15:多语言与领域特定嵌入技术
今日核心收获多语言嵌入技术通过共享语义空间实现跨语言检索领域特定嵌入需要针对专业术语进行模型适应两种技术可以灵活组合以适应不同业务场景实际部署时需要平衡精度与性能的关系实际应用建议先评估业务需求的语言和领域特点从小规模试点开始验证技术路线建立持续改进的迭代机制明日预告。原创 2025-07-14 17:38:17 · 499 阅读 · 0 评论 -
RAG实战指南 Day 14:自定义嵌入模型训练与优化
专业术语处理:法律、医疗等领域的专业术语文化语言差异:特定地区的语言表达习惯业务特定语义:企业内部的专用术语和缩写数据分布差异:与预训练数据分布不同的文本特征架构选择:对比了不同模型架构的优缺点及适用场景数据准备:领域数据的收集、清洗和标注方法训练技巧:对比学习目标、难例挖掘等高级技术评估优化:领域特定评估指标和迭代优化策略部署方案:生产环境的最佳实践和配置建议通过金融领域的实际案例,我们展示了如何将通用嵌入模型转化为强大的领域专用工具,实现了检索准确率从78%到92%的显著提升。原创 2025-07-11 17:18:19 · 424 阅读 · 0 评论 -
RAG实战指南 Day 13:嵌入模型选择与性能对比
模型选型方法论:根据业务需求平衡准确性、效率和成本性能优化技巧:缓存、批处理和量化等实用方法领域适配策略:专业领域的微调和预处理技术混合部署方案:结合开源模型和商业API的优势嵌入模型作为RAG系统的"语义理解引擎",其质量直接影响整个系统的表现。合理选择和优化嵌入模型,可显著提升检索准确率和系统响应速度。明天我们将探讨【Day 14: 自定义嵌入模型训练与优化】,学习如何为特定领域训练专属嵌入模型。原创 2025-07-10 17:42:05 · 483 阅读 · 0 评论 -
RAG实战指南 Day 12:高级语义分块技术
五大语义分块算法原理与实现分块质量量化评估体系法律文书案例的领域适配方案层级式分块架构设计跨文档关联处理技术简单文档先用嵌入聚类专业领域采用主题感知分块关键业务部署边界检测建立质量评估闭环不同文档类型使用不同策略主流程嵌入模型评测领域适配微调技术嵌入维度压缩方法混合检索策略低成本嵌入方案。原创 2025-07-09 21:20:26 · 718 阅读 · 0 评论 -
RAG实战指南 Day 11:文本分块策略与最佳实践
五大分块策略的实现原理与适用场景分块质量评估的量化指标体系多模态内容的分块与关联技术电商知识库案例的优化经验自适应分块选择算法先分析文档类型和特征再选择策略对混合内容采用多模态分块关键文档使用LLM辅助优化建立分块质量监控机制不同文档类型采用不同分块策略基于嵌入模型的动态分块主题连贯性分析算法跨文档上下文关联分块边界优化策略实时分块调整技术。原创 2025-07-09 20:20:30 · 890 阅读 · 0 评论 -
RAG实战指南 Day 10:数据清洗与质量控制策略
数据质量的6个评估维度和量化方法五种核心清洗技术的实现原理与Python代码端到端质量管控流水线的架构设计电商知识库案例中的实战优化经验不同技术方案的选型权衡与性能优化从简单规则开始,逐步引入机器学习方法建立质量指标监控体系,量化改进效果对关键数据保留人工审核环节设计可扩展的清洗流水线架构在Day 11中,我们将深入探讨"文本分块策略与最佳实践",这是构建高效RAG系统的关键步骤。不同分块算法的性能对比语义分块与语法分块的实现差异处理复杂文档结构的技巧。原创 2025-07-09 19:20:35 · 822 阅读 · 0 评论 -
RAG实战指南 Day 9:多模态数据处理:图片与表格数据
今天,我们深入探讨了多模态RAG系统中图片与表格数据处理的核心技术。多模态嵌入的基本原理和实现方法表格数据的三种处理策略及其适用场景完整的Python实现多模态RAG管道医疗报告分析的真实案例研究从简单到复杂逐步引入多模态能力根据业务需求调整各模态的权重建立专门的多模态评估流程明天预告:Day 10将探讨"数据清洗与质量控制策略",这是构建可靠RAG系统的关键基础。我们将深入讨论数据质量评估、自动化清洗流程和质量监控体系。原创 2025-07-08 18:00:11 · 998 阅读 · 0 评论 -
RAG实战指南 Day 8:PDF、Word和HTML文档解析实战
今天我们深入探讨了PDF、Word和HTML文档解析技术,掌握了处理企业知识库文档的完整技术栈。通过合理组合专用解析库和后处理技术,可以高质量地提取各类文档中的结构化信息,为RAG系统提供可靠的知识来源。不同文档格式需要针对性的解析策略混合使用多种工具可以获得最佳效果后处理是提升质量的关键步骤企业场景需要平衡准确率和性能明天我们将探讨【Day 9: 多模态数据处理:图片与表格数据】,学习如何从图像和表格中提取有价值的信息,进一步扩展RAG系统的知识获取能力。原创 2025-07-07 17:17:49 · 1014 阅读 · 0 评论 -
RAG实战指南 Day 7:非结构化文本数据处理技术
缺乏明确的字段分隔语法和语义结构复杂包含大量噪声(如特殊符号、停用词)上下文依赖性较强社交媒体内容(推文、评论)企业文档(合同、报告)用户生成内容(客服对话、产品评价)文本清洗标准化:统一文本格式,消除噪声干扰多级特征提取:从词汇级到语义级的渐进式处理领域适应策略:针对专业领域的定制化处理性能优化技巧:批量处理、缓存和并行化中文特殊处理:分词和实体识别的独特挑战。原创 2025-07-06 15:32:30 · 947 阅读 · 0 评论 -
RAG实战指南 Day 6:数据源类型与导入策略
数据源分类:理解结构化、半结构化和非结构化数据的处理差异导入技术:掌握各类数据源的Python实现方法混合处理:构建统一管道处理多种数据类型实战优化:学习实际项目中的性能优化技巧权衡取舍:不同策略的优缺点和适用场景这些技术将帮助你构建健壮的RAG数据基础,为后续的检索和生成阶段提供高质量输入。在实际项目中,建议根据数据特点和业务需求选择合适的导入策略,并持续监控数据质量。明天我们将进入【RAG实战指南 Day 7】非结构化文本数据处理技术,探讨如何从原始文本中提取最大价值。原创 2025-07-05 14:35:49 · 1113 阅读 · 0 评论 -
RAG实战指南 Day 5:其他RAG开发框架对比与选择
初始化内核# 配置记忆存储# 定义自定义技能基于以下信息回答问题:问题: {{$user_input}}答案:"""# 存储和检索信息context["user_input"] = "RAG系统的主要优势是什么?context["memory"] = "RAG系统可以降低幻觉风险并提供可验证的回答"今天,我们深入探讨了除LangChain和LlamaIndex之外的主要RAG开发框架,包括Haystack、Semantic Kernel、Jina和RAGchain。原创 2025-07-04 18:12:13 · 832 阅读 · 0 评论 -
RAG实战指南 Day 4:LlamaIndex框架实战指南
LlamaIndex的核心价值在于高效的数据结构化和灵活的多源集成掌握三种基础索引类型(Vector/Tree/Keyword)的应用场景混合检索策略可显著提升结果质量增量索引和缓存是性能优化的关键手段。原创 2025-07-03 22:07:10 · 964 阅读 · 0 评论 -
RAG实战指南 Day 3:LangChain框架深度解析
LangChain的模块化架构和标准化接口设计文档加载、处理、检索和生成的完整流程实际企业知识库系统的实现案例性能优化技巧和常见问题解决方案LangChain的强大之处在于它提供了一套完整的抽象和工具,让开发者能够专注于业务逻辑而非底层集成。虽然学习曲线较陡,但一旦掌握,可以大幅提升RAG系统的开发效率和质量。明日预告:在Day 4中,我们将探讨LlamaIndex框架,特别关注它在结构化数据处理和多源集成方面的优势。原创 2025-07-03 21:59:40 · 650 阅读 · 0 评论 -
RAG实战指南 Day 2:RAG开发环境搭建与工具选择
核心组件:Python环境、AI框架、向量数据库等环境验证:完整的组件测试脚本实战案例:企业知识库的环境搭建工具对比:不同场景下的最佳选择关键收获掌握RAG开发环境的完整配置流程理解不同工具的优势和适用场景学会验证环境正确性的方法了解实际项目中的技术选型策略明日预告:在Day 3中,我们将深入解析LangChain框架,学习如何利用这个强大的工具来编排RAG流程,包括文档加载、文本处理、检索链构建等核心功能。通过实际代码示例,你将掌握LangChain的高级用法和最佳实践。原创 2025-07-02 18:01:40 · 874 阅读 · 0 评论 -
RAG实战指南 Day 1:RAG系统概述及架构设计
检索增强生成(Retrieval-Augmented Generation,简称RAG)是当前大语言模型应用中最具实用价值的技术范式之一。知识更新问题:传统LLM的知识固化在模型参数中,难以实时更新事实准确性问题:模型容易产生幻觉(Hallucination),生成无依据的内容领域适应问题:需要昂贵微调才能适应特定垂直领域检索阶段:根据用户查询从知识库中检索相关文档片段增强阶段:将检索结果与原始查询组合成增强上下文生成阶段:语言模型基于增强上下文生成最终响应。原创 2025-07-01 23:02:04 · 866 阅读 · 0 评论