2、基于标签关联模型的节目推荐算法解析

基于标签关联模型的节目推荐算法解析

1. 标签因子计算与归一化

在节目推荐中,标签是一个重要的元素。标签的相关因子可以通过对应时间的处理来获得。以标签 tagM 的数值计算为例,其计算公式如下:
[
factor =
\begin{cases}
\frac{timelongM - timelong}{timelongM} + 1, & timelongM \neq 0 \
1, & timelongM = 0
\end{cases}
]
其中, timelong 是每个标签对应时间的平均值,计算公式为:
[
timelong = \frac{\sum_{i = 1}^{M} timelongi}{M}
]
通过上述公式计算出的因子大多大于 0,但对于一些时间值极小的标签,因子值会小于 0;若用户在某些标签上花费大量时间,因子值会远大于 1。这些特殊情况不利于保留原始的标签 - 标签关联,因此需要对因子的数值进行进一步处理。因子归一化的公式如下:
[
realfactor =
\begin{cases}
factor, & factor \in [0.01, 1.99] \
0.01, & factor \in [-1, 0.01) \
1.99, & factor \in (1.99, 1]
\end{cases}
]
通过这种方法,每个用户可以得到对应其观看偏好的标签因子,这些因子的值被限制在 0.01 到 1.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值