Python深度学习实现验证码识别全攻略

放在前面

Python深度学习实现验证码识别全攻略

Python深度学习实现验证码识别全攻略

在网络安全领域,验证码作为人机区分的关键防线,广泛应用于登录、注册等场景。随着技术演进,验证码样式愈发复杂,传统识别手段力不从心,而基于Python的深度学习技术,为攻克这一难题开辟了新路径。

一、前期准备:夯实基础

搭建开发环境

建议安装Python 3.8及以上版本,以适配主流深度学习框架。TensorFlow和PyTorch是常用的深度学习框架,这里以TensorFlow为例,通过pip install tensorflow即可轻松完成安装。此外,OpenCV库用于图像处理,执行pip install opencv - python命令进行安装,为后续图像的读取、预处理提供支持。

精心筹备数据集

数据集的质量直接关乎模型性能。一方面,可以从Kaggle等公开数据平台下载验证码数据集;另一方面,利用爬虫脚本,从常见网站的验证码接口采集样本。收集后,需对图片逐一标注,将验证码对应的文本准确记录,如“3aB7”的验证码图片,标签就是“3aB7”。为扩充数据集规模,增强模型泛化能力,利用OpenCV进行数据增强。对图片进行旋转、缩放、添加噪点等操作,如将一张数字验证码图片旋转15度,或是添加适量高斯噪点,创造新的训练样本。

二、模型构建:打造核心“大脑”

设计卷积神经网络(CNN)架构

CNN是验证码识别的有力武器。在构建架构时,卷积层首当其冲,选用3x3或5x5的卷积核,在图像上滑动提取边缘、拐角等基础特征,多个卷积核并行工作,生成丰富的特征图。紧随其后的池化层,常采用最大池化,在2x2或3x3的窗口内取最大值,降低特征图维度,减少计算量,同时增强模型对图像平移、旋转的鲁棒性。经过多层卷积和池化后,将特征图扁平化为一维向量,输入全连接层,通过权重矩阵对特征进行线性组合,完成对字符特征的深度抽象与分类。

模型训练与优化

训练时,选择交叉熵损失函数衡量预测结果与真实标签的差异,搭配Adam优化器,它能自适应调整学习率,助力模型更快收敛。将数据集按70%训练集、15%验证集、15%测试集的比例划分。在训练过程中,模型在训练集上执行前向传播计算预测值,依据损失函数算出误差,利用反向传播更新参数;在验证集上定期评估,观察损失值与准确率变化,防止过拟合,直至模型在验证集上性能稳定。

三、实战环节:攻克验证码识别难题

图像预处理

拿到验证码图片,先用OpenCV的cv2.cvtColor()函数将其灰度化,减少数据维度;再通过cv2.medianBlur()函数进行中值滤波降噪,去除椒盐噪声;最后利用cv2.threshold()函数进行二值化处理,设定合适阈值,让字符与背景黑白分明,突出字符轮廓。

字符分割(针对多字符验证码)

对于多字符验证码,投影法是常用的分割手段。计算图像在水平和垂直方向的像素投影,字符区域投影值大,间隔处投影值小,借此确定分割点,将验证码拆解为单个字符图像。

模型预测与结果输出

把预处理、分割后的字符图像输入训练好的模型,模型输出字符属于各类别的概率,选取概率最高的类别作为预测结果,将单个字符预测结果组合,便得到完整的验证码识别结果。

掌握这套基于Python深度学习的验证码识别方法,能有效突破验证码识别难题,为相关领域的自动化处理与安全防护提供有力支持 。

1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用! 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。在使用过程中,如有问题或建议,请及时私信沟通。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 【资源说明】 基于yolov5的极验空间推理验证码模型训练python源码+标注好的数据集+项目说明.zip 测试接口 接口随时都可能会关掉,如果不通就是被我关掉了。 测试接口:`http://49.234.3.186:8888/index` 限制每天500次请求,每小时100次请求,每分钟60次请求。(总计) ### GET请求参数 参数 | 值 | ---- | ---- | gt | c9428d9361cd70d26e28d7cd780ec640 | challenge | 9a5d3a1db9dadbaa867f6a34a5512740 | ### 请求成功示例 ```json { "msg":[], "result":"success", "score":"1", "validate":"ac00fdb3bc74b012c3b82cca057675fa" #使用challenge和validate一起提交验证即可 } ``` ## 验证码问题求解思路 训练模型比较简单,我自己标记了100张图的标签,可以直接训练,也可以直接用我训练好的权重文件`best.pt`,训练了大概700次左右,感觉效果还是不错的,我认为比较麻烦的部分还是分析问题找出符合条件的物体,我写出的逻辑识别成功率大概在80%,暂时不公开逻辑。 `请点击在黄色圆柱体后面的黄色物体。`判断前后左右,可以根据物体底部的xy坐标。 `请点击与绿色物品有相同大小的球。`判断相同大小,可以对比符合条件的物体的二维面积,最相近的可以认为相同大小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值