
AI大模型
文章平均质量分 92
AI大模型是当前人工智能领域最具突破性的技术之一,代表着机器学习和深度学习的重大进展。本专栏将深入探讨ChatGPT、Claude等大语言模型的工作原理、应用场景和发展趋势,帮助读者了解Transformer架构、预训练与微调等核心技术。
AI陪跑
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
一次性搞定:用 vLLM 容器部署 Qwen2.5-VL 并无缝接入本地 Chatbox
在本地部署一个多模态的大模型并不一定需要天花乱坠的 DevOps 大工程,也不需要写上一堆 Python 代码来启动后端 API。有了容器和vLLM,以及类似Chatbox这样的可视化界面,一条命令就能搞定服务,全程无痛。也希望这样的方法能帮到更多需要低门槛部署大模型、或希望私有化守护数据安全的团队,一起把技术创新落到实处。原创 2025-03-29 19:01:48 · 3825 阅读 · 0 评论 -
10倍效率还是10倍废武功?看DeepSeek如何一步步让程序员变废材的
我的技能有没有在被稀释?。一些人会因为短期收益(快速完成项目)而放弃思考的乐趣;但也有人在这股浪潮中,把AI当成“助推器”,让自己能够更专注于核心业务、复杂逻辑与创新设计。你愿意成为哪一种开发者?如果你满足于做“人形中转接口”,那么一天不离AI,可能也会让你与之融为一体,直至被替代。如果你坚持挖掘底层原理、构建更全维度的思考框架,并在“AI赋能+自我精进”中不断突破,那么即使AI再强,也很难动摇你的专业地位。无论如何,技术从来不是终点,而是让人类不断前行的工具。原创 2025-02-27 09:47:28 · 1258 阅读 · 0 评论 -
颠覆传统开发:用LangChain实现极致‘对话式’软件构建
通过这些例子可以看到,“AI+工作流编排”的魅力在于让软件开发过程不再“割裂”。在这个平台里,需求一旦更新,就能迅速触发设计或代码的同步更新;而工程师需要做的,是和AI“对话”,从而将人类的创造力和大模型强大的文本处理能力结合起来。回想起当初那个“需求文档缺失”导致的项目延期的日子,如果当时就有像现在这样基于LangChain的AI智能体,或许我们可以把时间花在真正的需求分析和业务价值上,而不是让每个人都疲于撰写和合并各种文档。原创 2025-02-20 09:33:09 · 1376 阅读 · 0 评论 -
构建你自己的 AI 开发平台 —— 从需求到交付的温情革新
Build your own AI 开发平台,不仅是一个工程项目,更是一段能够改变工作方式和人生经历的旅程。当你在忙碌的开发日子中看到平台自动生成整齐文档、秒级部署上线的那一刻,那种轻松感和成就感,将会让你觉得所有的努力都是值得的。原创 2025-02-13 10:53:25 · 1982 阅读 · 0 评论 -
DeepSeek 时代必修课:从java源码到 JVM 的全自动编译与重载实践
让我们先把问题描述得更具象一些。想象这样一个场景:在 AI 平台上,通过 DeepSeek 生成了一份新的后端业务逻辑,里面包含了好几个新功能和类。此时如果我们不想依赖任何 IDE,而是通过一整套脚本化、自动化流程来完成编译与运行,那就需要解决下列几个难点:源代码的增量编译 由于 Java 是静态语言,必须在运行前编译才能得到 文件。而且 Maven 编译需要设置完整的 classpath、依赖库等,这对于跨机器或跨环境的部署十分关键。HotSwap 与 JVM 重载 在 Java 环境中,默认情况下原创 2025-02-19 09:32:36 · 907 阅读 · 0 评论 -
GrapesJS + Deepseek:前端可视化搭建的黄金拍档,挖掘前端“超车”秘诀!
在同一个编辑器内,如果你需要让不同自定义组件共享数据(如搜索框组件驱动数据列表组件、再影响统计组件),可以基于 Pinia (或 Redux)这类全局状态管理库进行通信。组件的View里,引用全局状态进行读写;导出到运行模式后,也可以在 React/Vue 里保持相同的全局状态逻辑,把这些组件变成可复用的 UI 模块。View:编辑器模式下专用脚本,同步 GrapesJS 的各项 API;Script:最终页面运行脚本,与编辑器无关;不要混淆这两者的作用域,否则会在生产环境产生错误。原创 2025-02-18 10:17:44 · 1798 阅读 · 0 评论 -
搞懂DeepSeek量化家族:每个版本都在玩什么花样?
DeepSeek 模型的量化版本很多,如果只看名称,很容易看得眼花缭乱。这里先给大家一张简单对照表,帮助入门理解。量化类型位数显存占用(7B模型)速度(tokens/s)典型特征Q22 位整数约 3.2GB4 - 6极端压缩比例,对精度有明显影响Q4_04 位整数4GB6 - 8基础 4 位量化,普适性较高Q4_K_M4 位整数4.5GB8 - 10在块量化基础上做优化,精度更稳定Q5_K_M5 位整数5GB7 - 9提升精度,牺牲少量显存FP88 位浮点~5GB。原创 2025-02-28 14:39:56 · 4741 阅读 · 0 评论