量子操作、通信与纠缠:信息处理的新视角
量子纠缠与通信的基础
在量子信息科学中,处于空间上分离区域的复合纯态系统展现出与量子纠缠相关的非局域因果性。这些不同的区域被视为实验室,其中的物理系统对应着不同的希尔伯特空间,复合系统的状态可通过各子系统希尔伯特空间的张量积来描述。每个实验室中有能对其内部子系统进行量子操作,并与其他实验室中的主体进行通信的主体。
通信的基本任务是尽可能准确地传递信息。经典信息源可通过发射机向通信信道发射一系列符号的概率分布来定义。在实际物理场景中,除了考虑主体之间的信息通信能力(基于此可对量子信号态进行本地操作),还需考虑自然环境对量子态的影响。自然环境通常会使子系统态发生退相或退相干,影响通信和信息处理效率,还会影响态的非局域性和纠缠。
当量子系统与环境接触时,它成为开放系统。不过,开放和封闭系统的情况通常都能用完全正保迹(CPTP)线性变换来描述,即 $\rho \to E(\rho)$,这种变换也被称为操作。$E(\rho)$ 是一个超算子,需满足以下条件:
1. $tr[E(\rho)]$ 是变换 $\rho \to E(\rho)$ 发生的概率。
2. $E(\rho)$ 是统计算子上的线性凸映射,即 $E(\sum_{i} p_{i}\rho_{i}) = \sum_{i} p_{i}E(\rho_{i})$,其中 $p_{i}$ 是概率。
3. $E(\rho)$ 是完全正(CP)映射。
满足上述三个条件的映射 $E(\rho)$ 可写成 $E(\rho) = \sum_{i} K_{i}\rho K_{i}^{\dagger}$ 的形式,其中 ${K_{i}}$ 是一组不一定是厄米的线性算子