量子物理中的矩阵、纠缠态分类及相关逻辑与代数结构
1. 矩阵与算子表示
在量子物理中,算子 (O) 相对于基态 (|i⟩) 和 (|j⟩) 的矩阵元素为 (\langle j|O|i\rangle\in C)。算子的矩阵表示依赖于特征基的选择。厄米算子(可观测量)对应着物理量,其矩阵的对角元素 (O_{ii}) 为实数,非对角元素为复数,且满足 (O_{ij} = O_{ji}^*)。
统计算子 (\rho) 的矩阵表示被称为密度矩阵。当状态为纯态时,密度矩阵的秩为 1。在适当条件下,可通过谱表示来定义算子 (O) 的函数:
[f(O) = \sum_{n} f(o_n)P(|o_n\rangle)]
两个向量 (|v\rangle) 和 (|w\rangle) 的张量积写作 (|v\rangle\otimes|w\rangle)。张量积空间 (V \otimes W) 是由这些向量积构成的线性空间。若两个向量空间 (V) 和 (W) 分别有基 (|v_1\rangle, \cdots, |v_k\rangle) 和 (|w_1\rangle, \cdots, |w_l\rangle),则 (V \otimes W) 的一个对应基为 ({|v_i\rangle\otimes|w_j\rangle: 1 \leq i \leq k, 1 \leq j \leq l}),且 (\dim(V \otimes W) = kl)。任意向量 (|\Psi\rangle\in V \otimes W) 可表示为:
[|\Psi\rangle = \sum_{ij} \alpha_{ij}|v_i\rangle|w_j\rangle]
其中,(\alpha_{ij}