新书速览|Transformer深度解析与NLP应用开发

《Transformer深度解析与NLP应用开发》

本书内容

《Transformer深度解析与NLP应用开发》系统解析Transformer的核心原理,从理论到实践,帮助读者全面掌握其在语言模型中的应用,并通过丰富案例剖析技术细节。《Transformer深度解析与NLP应用开发》共12章,内容涵盖Transformer模型的架构原理、自注意力机制及其相对于传统方法的优势,并详细剖析BERT、GPT等经典衍生模型的应用。书中围绕数据预处理、文本分类、序列标注、文本生成、多语言模型等核心任务,结合迁移学习、微调与优化技术,展示Transformer在语义匹配、问答系统和文本聚类等场景中的实际应用。针对企业级开发需求,还特别介绍了ONNX与TensorRT优化推理性能的最佳实践,为大规模数据处理及低资源部署提供了解决方案。

本书作者

梁志远,博士,毕业于北京航空航天大学。长期从事人工智能、大语言模型的开发,专注于深度学习、自然语言处理、数据分析与智能决策等领域。主持或参与多项科研项目,涵盖模型训练优化、知识蒸馏、自动推理与多模态学习等方向。致力于推动人工智能技术在工业应用、智能交互与数据驱动中的实践与发展。

韩晓晨,博士,长期从事高性能计算与大模型训练算力优化研究。近十年来,专注于智能计算架构优化及大规模数据处理,深耕控制算法、机器视觉等领域。近年来,重点研究大模型训练加速、算力调度与异构计算优化,致力于提升计算效率与资源利用率,推动大规模人工智能模型的高效部署与应用。

本书读者

《Transformer深度解析与NLP应用开发》兼具理论深度与实际应用价值,内容系统,案例丰富,适合大模型及NLP研发人员、工程师、数据科学研究人员以及高校师生阅读与参考。

本书目录

一、从统计学习到Transformer崛起1

二、开发环境配置:构建高效的Transformer开发平台3

第1章  Transformer与自然语言处理概述7

1.1  Transformer的基础架构与原理7

1.1.1  多头注意力机制的核心计算8

1.1.2  位置编码与网络稳定性的设计11

1.2  深度学习经典架构CNN和RNN的局限性15

1.2.1  CNN在自然语言处理中的应用与局限15

1.2.2  RNN架构与长序列建模问题17

1.3  自注意力机制19

1.3.1  自注意力机制的矩阵计算原理19

1.3.2  计算复杂度与信息保持21

1.4  BERT双向编码器与GPT单向生成器23

1.4.1  BERT架构与双向信息编码23

1.4.2  GPT架构与单向生成能力26

1.5  基于Transformer的迁移学习27

1.5.1  迁移学习方法与特定任务适应性27

1.5.2  迁移学习的实际应用与优化策略30

1.6  Hugging Face平台开发基础34

1.6.1  关于Hugging Face35

1.6.2  环境准备35

1.6.3  快速上手:使用预训练模型35

1.6.4  数据预处理与分词36

1.6.5  使用自定义数据集进行推理36

1.6.6  微调预训练模型37

1.6.7  保存与加载模型38

1.6.8  部署模型到Hugging Face Hub39

1.7  本章小结40

1.8  思考题40

第2章  文本预处理与数据增强41

2.1  文本数据清洗与标准化41

2.1.1  正则表达式在文本清洗中的应用41

2.1.2  词干提取与词形还原技术46

2.2  分词与嵌入技术48

2.2.1  n-gram分词与BERT分词原理48

2.2.2  Word2Vec与BERT词嵌入的动态表示50

2.3  字符级别与词级别的嵌入方法56

2.3.1  字符级嵌入模型的实现与优势56

2.3.2  FastText在细粒度信息捕捉中的应用58

2.4  数据集格式与标签处理63

2.4.1  JSON和CSV格式的数据读取与处理63

2.4.2  多标签分类的标签编码与存储优化68

2.5  数据增强方法70

2.5.1  同义词替换与句子反转的增强策略70

2.5.2  EDA方法在数据扩充中的应用73

2.6  本章小结77

2.7  思考题77

第3章  基于Transformer的文本分类79

3.1  传统的规则与机器学习的文本分类对比79

3.1.1  基于逻辑树和正则表达式的关键词分类79

3.1.2  TF-IDF与词嵌入在传统分类算法中的应用81

3.2  BERT模型在文本分类中的应用83

3.2.1  BERT特征提取与分类头的实现83

3.2.2  BERT在二分类与多分类任务中的微调86

3.3  数据集加载与预处理88

3.3.1  使用Hugging Face datasets库加载数据集89

3.3.2  数据清洗与DataLoader的批处理优化90

3.4  文本分类中的微调技巧92

3.4.1  学习率调度器与参数冻结92

3.4.2  Warmup Scheduler与线性衰减95

3.5  本章小结98

3.6  思考题99

第4章  依存句法与语义解析100

4.1  依存句法的基本概念100

4.1.1  依存关系术语解析:主谓宾结构与修饰关系100

4.1.2  使用SpaCy构建依存关系树与句法提取102

4.2  基于Tree-LSTM的依存句法打分方法104

4.2.1  Tree-LSTM处理依存树结构的实现104

4.2.2  句法结构的打分与信息传递机制107

4.3  使用GNN实现依存关系109

4.3.1  图神经网络在依存结构建模中的应用110

4.3.2  节点特征与边权重的依存关系表示112

4.4  Transformer在依存解析中的应用115

4.4.1  BERT上下文嵌入与GNN模型的结合115

4.4.2  混合模型在依存关系建模中的应用117

4.5  依存句法与语义角色标注的结合118

4.5.1  语义角色标注的定义与依存关系融合119

4.5.2  使用AllenNLP实现句法结构与语义角色标注的结合121

4.6  本章小结123

4.7  思考题124

第5章  序列标注与命名实体识别125

5.1  序列标注任务与常用方法125

5.1.1  BIO编码与标签平滑技术125

5.1.2  条件随机场层的数学原理与实现129

5.2  双向LSTM与CRF的结合131

5.2.1  双向LSTM的结构与工作原理131

5.2.2  ELMo模型的上下文嵌入与序列标注133

5.3  BERT在命名实体识别中的应用134

5.3.1  BERT的CLS标记与Token向量在NER中的作用134

5.3.2  NER任务的微调流程与代码实现136

5.4  实体识别任务的模型评估138

5.4.1  NER评估标准:准确率、召回率与F1分数138

5.4.2  各类实体的性能评估与代码实现140

5.5  结合Gazetteers与实体识别141

5.5.1  领域特定词典的构建与应用141

5.5.2  结合词典信息提升实体识别准确性144

5.6  本章小结147

5.7  思考题147

第6章  文本生成任务的Transformer实现149

6.1  生成式文本任务的基本方法149

6.1.1  n-gram模型与马尔可夫假设149

6.1.2  n-gram模型在长文本生成中的局限性150

6.2  优化生成策略152

6.2.1  Greedy Search与Beam Search算法152

6.2.2  Top-K采样与Top-P采样155

6.3  T5模型在文本摘要中的应用159

6.3.1  T5编码器-解码器架构在文本摘要中的应用159

6.3.2  T5模型的任务指令化微调与应用优化161

6.4  生成式Transformer模型的比较164

6.4.1  GPT-2、T5和BART的架构区别与生成任务适配164

6.4.2  生成式模型在文本摘要和对话生成中的对比应用167

6.5  Transformer在对话生成中的应用169

6.5.1  对话生成模型的上下文保持与一致性169

6.5.2  使用GPT-2与DialoGPT构建多轮对话生成系统172

6.6  文本生成的端到端实现173

6.6.1  新闻摘要任务的文本生成流程173

6.6.2  多种生成方式结合:提升生成质量175

6.7  本章小结178

6.8  思考题178

第7章  多语言模型与跨语言任务180

7.1  多语言词嵌入与对齐技术180

7.1.1  对抗训练在词嵌入对齐中的应用180

7.1.2  跨语言文本相似度计算的投影矩阵方法183

7.2  XLM与XLM-R的实现185

7.2.1  XLM与XLM-RoBERTa在多语言任务中的模型结构185

7.2.2  多语言文本分类与翻译任务中的应用实例186

7.3  使用XLM-RoBERTa进行多语言文本分类188

7.3.1  XLM-RoBERTa的加载与微调流程188

7.3.2  标签不均衡与语言分布不平衡的处理技巧190

7.4  跨语言模型中的翻译任务192

7.4.1  XLM-RoBERTa在翻译任务中的应用192

7.4.2  翻译任务的模型微调与质量提升策略194

7.5  多语言模型的代码实现与评估197

7.5.1  多语言模型的数据加载与训练实现197

7.5.2  BLEU与F1分数在跨语言任务中的评估应用199

7.5.3  多语言模型综合应用示例202

7.6  本章小结205

7.7  思考题206

第8章  深度剖析注意力机制207

8.1  Scaled Dot-Product Attention的实现207

8.1.1  查询、键和值的矩阵计算与缩放207

8.1.2  softmax归一化与注意力权重的提取与分析210

8.2  多头注意力的实现细节与优化212

8.2.1  多头注意力的并行计算与输出拼接212

8.2.2  初始化方法与正则化技巧防止过拟合215

8.3  层归一化与残差连接在注意力模型中的作用217

8.3.1  层归一化的标准化与稳定性提升217

8.3.2  残差连接在信息流动与收敛性中的作用219

8.4  注意力机制在不同任务中的应用221

8.4.1  机器翻译与摘要生成中的注意力应用实例221

8.4.2  注意力权重可行性解释225

8.5  Attention Is All You Need论文中的代码实现226

8.5.1  多头注意力与前馈神经网络的分步实现226

8.5.2  位置编码的实现与代码逐行解析229

8.6  本章小结232

8.7  思考题232

第9章  文本聚类与BERT主题建模234

9.1  文本聚类任务概述234

9.1.1  K-means算法在文本聚类中的应用234

9.1.2  层次聚类算法的实现与潜在类别发现237

9.2  使用Sentence-BERT进行聚类238

9.2.1  Sentence-BERT的文本嵌入表示239

9.2.2  短文本与长文本聚类的相似度分析240

9.3  BERT在主题建模中的应用244

9.3.1  BERT与LDA结合实现主题模型244

9.3.2  动态嵌入生成语义化主题表示246

9.4  本章小结250

9.5  思考题250

第10章  基于语义匹配的问答系统251

10.1  使用Sentence-BERT进行语义相似度计算251

10.1.1  句子嵌入在语义相似度中的应用251

10.1.2  余弦相似度的计算与代码实现253

10.2  语义匹配任务中的数据标注与处理255

10.2.1  数据标注格式设计255

10.2.2  数据不平衡问题:重采样与加权259

10.3  基于BERT的问答系统261

10.3.1  BERT在SQuAD数据集上的微调流程262

10.3.2  CLS与SEP标记在问答任务中的作用266

10.4  使用DistilBERT进行MRC优化269

10.4.1  DistilBERT的蒸馏过程与模型简化269

10.4.2  DistilBERT在问答系统中的高效应用271

10.5  本章小结275

10.6  思考题275

第11章  常用模型微调技术277

11.1  微调基础概念277

11.1.1  冻结层与解冻策略的应用场景277

11.1.2  微调中的参数不对称更新281

11.2  使用领域数据微调BERT模型283

11.2.1  金融与医学领域数据的预处理与标签平衡283

11.2.2  BERT微调过程中的参数初始化与学习率设置285

11.3  参数高效微调(PEFT)进阶288

11.3.1  LoRA、Prefix Tuning的实现与应用288

11.3.2  Adapter Tuning的工作原理与代码实现291

11.4  本章小结294

11.5  思考题294

第12章  高级应用:企业级系统开发实战296

12.1  基于Transformer的情感分析综合案例296

12.1.1  基于BERT的情感分类:数据预处理与模型训练296

12.1.2  Sentence-BERT文本嵌入300

12.1.3  情感分类结果综合分析305

12.2  使用ONNX和TensorRT优化推理性能307

12.2.1  Transformer模型的ONNX转换步骤307

12.2.2  TensorRT量化与裁剪技术的推理加速312

12.2.3  ONNX Runtime的多线程推理优化与分布式部署316

12.2.4  TensorRT动态批量大小支持与自定义算子优化318

12.3  构建NLP企业问答系统321

12.3.1  清洗、增强和格式化数据322

12.3.2  模型训练、微调及推理服务支持327

12.3.3  RESTful API接口330

12.3.4  系统状态记录与异常监控332

12.3.5  系统开发总结337

12.4  本章小结339

12.5  思考题339

本书特色

本文摘自《Transformer深度解析与NLP应用开发》,获出版社和作者授权发布。

Transformer深度解析与NLP应用开发——jd

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值