HDU--1496--哈希-折半枚举

探讨了在特定参数条件下,四元二次方程的有效解数量。通过分析系数的符号和范围,使用哈希表加速查找过程,实现高效计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Consider equations having the following form:

a*x1^2+b*x2^2+c*x3^2+d*x4^2=0
a, b, c, d are integers from the interval [-50,50] and any of them cannot be 0.

It is consider a solution a system ( x1,x2,x3,x4 ) that verifies the equation, xi is an integer from [-100,100] and xi != 0, any i ∈{1,2,3,4}.

Determine how many solutions satisfy the given equation.

Input

The input consists of several test cases. Each test case consists of a single line containing the 4 coefficients a, b, c, d, separated by one or more blanks.
End of file.

Output

For each test case, output a single line containing the number of the solutions.

Sample Input

1 2 3 -4
1 1 1 1
Sample Output

39088
0

思路:1.在a,b,c,d,四者同号是没有ans;

2.在哈希数组中判断,开辟空间为2*1000000+10即可;折半枚举,依次查找;

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
using namespace std;
const int MAX=1000000;
int Hash[2000011];
int main(){
	int a,b,c,d;
	while(scanf("%d%d%d%d",&a,&b,&c,&d)!=EOF){
		if(a*b>0&&b*c>0&&c*d>0){	
			printf("0\n");
		}else{ 
			memset(Hash,0,sizeof(Hash));
			int ans=0;
			for(int i=1;i<=100;i++)
				for(int j=1;j<=100;j++){ 
					Hash[MAX+a*i*i+b*j*j]++;
				} 
			for(int i=1;i<=100;i++)
				for(int j=1;j<=100;j++){
					ans+=Hash[MAX-(c*i*i+d*j*j)];
				}
			printf("%lld\n",ans*16);
		} 
	} 
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值