给定一个大小为 n 的数组,找到其中的众数。众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素。
你可以假设数组是非空的,并且给定的数组总是存在众数。
例子
输入:[3,2,3]
输出:3
输入:[2,3,4,5,4]
输出:4
方法一:暴力解决法
遍历整个数组,同时统计每个数字出现的次数。
最后将出现次数大于一半的元素返回即可。
class Solution {
public int majorityElement(int[] nums) {
int majorityCount = nums.length/2;
for (int num : nums) {
int count = 0;
for (int elem : nums) {
if (elem == num) {
count += 1;
}
}
if (count > majorityCount) {
return num;
}
}
return -1;
}
}
复杂度分析
- 时间复杂度O(n²),暴力算法包含两重嵌套的for循环,每一层n次迭代,所以总的是平法级的时间复杂度
- 空间复杂度O(1),暴力方法没有分配与输入规模成比例的额外的空间
方法二:哈希表
想法
我们知道出现次数最多的元素大于 n/2 次,所以可以用哈希表来快速统计每个元素出现的次数
算法
用哈希表来存储每个元素,然后用一个循环在线性时间内遍历nums,只需要返回有最大值的数
class Solution {
private Map<Integer, Integer> countNums(int[] nums) {
Map<Integer, Integer> counts = new HashMap<Integer, Integer>();
for (int num : nums) {
if (!counts.containsKey(num)) {
counts.put(num, 1);
}
else {
counts.put(num, counts.get(num)+1);
}
}
return counts;
}
public int majorityElement(int[] nums) {
Map<Integer, Integer> counts = countNums(nums);
Map.E***y<Integer, Integer> majorityE***y = null;
for (Map.E***y<Integer, Integer> e***y : counts.e***ySet()) {
if (majorityE***y == null || e***y.getValue() > majorityE***y.getValue()) {
majorityE***y = e***y;
}
}
return majorityE***y.getKey();
}
}
复杂度分析
- 时间复杂度:O(n),我们将nums迭代一次,哈希表的插入时常数时间的。所以总时间复杂度为O(n)时间的。
- 空间复杂度O(n),哈希表最多包含 n-n/2 个关系,所以占用的空间为O(n)。是因为任意一个长度为 nn 的数组最多只能包含 n 个不同的值,但题中保证 nums 一定有一个众数,会占用(最少)n/2+1个数字。因此最多有n-(n/2+1)个不同的数字,所以最多有n-n/2个不同的元素