- 博客(13)
- 收藏
- 关注
原创 Anomaly Detection系列(ICIP2023 UVAD论文解读)
本文探索了扩散模型在无监督视频异常检测(VAD)中的应用。传统VAD方法面临标注成本高、泛化能力差等挑战,而扩散模型通过"腐蚀-重建"机制有效捕捉视频数据的时空特征,利用重建误差差异区分正常与异常事件。实验表明,该方法在UCF-Crime和ShanghaiTech数据集上优于现有生成模型,部分场景超越复杂混合模型。研究还分析了噪声分布、反向过程起点等关键参数对性能的影响。扩散模型展现出强大的无监督学习能力,为VAD提供了新思路,未来可在跨数据集泛化、效率优化等方面进一步探索。
2025-07-18 20:59:12
802
原创 Temporal Action Detection (AAAI2025 AAPL论文解读)
本文提出了一种动作不可知性点级监督(AAPL)的时序动作检测方法,通过在少量采样帧上标注动作类别和背景,显著降低标注成本。相比传统点级监督需标注所有动作实例,AAPL仅需标注自动采样的部分帧。研究者设计了包含点损失、视频损失和对比损失的三重优化目标,有效利用有限标注信息。实验表明,在THUMOS'14等多个数据集上,AAPL以更低成本实现了优于视频级监督、媲美点级监督的性能,特别是在动作稀疏场景表现突出。该方法为平衡标注成本与检测精度提供了新思路。
2025-07-17 16:34:51
945
原创 Anomaly Detection系列(AAAI2022 UVAD论文解读)
本文提出一种基于因果推理的两阶段无监督视频异常检测(UVAD)方法,首次从因果角度分析伪标签噪声对性能的影响。研究发现伪标签生成过程存在混杂效应,通过构建因果图定位问题根源,并提出去混淆训练(DCFD)和反事实时间上下文集成(CTCE)两阶段框架。DCFD采用因果干预消除伪标签噪声,CTCE通过特征替换融合长程时间上下文。实验在6个标准数据集上验证了方法的有效性,显著超越现有方法(如UCSD Ped2数据集AUC达99.4%),证明因果推理能有效解决UVAD的噪声伪标签和长程依赖问题,为未来研究提供了新思路
2025-07-14 19:15:01
1316
原创 Anomaly Detection系列(PR2022 ITAE论文解读)
本文提出了一种基于隐式双路径自编码器(ITAE)和归一化流(NF)的无监督视频异常检测方法。ITAE通过两个编码器隐式学习静态外观和动态运动特征,并由单个解码器融合重建,有效捕捉正常视频模式。在此基础上,利用NF对潜在特征进行密度估计,通过计算分布外似然值增强异常检测能力。实验表明,该方法在多个基准数据集上取得优于传统方法的性能,尤其擅长处理跨场景复杂情况。关键创新在于:1)隐式双路径特征学习避免了显式分离外观与运动的信息割裂;2)NF建模弥补了自编码器对细微异常的敏感性不足;3)完全无监督设计提升实际应用
2025-07-10 16:43:04
796
原创 Anomaly Detection系列(MDPI2018 综述论文解读)
本文聚焦深度学习驱动的无监督与半监督视频异常检测方法,剖析其范式演进与技术细节。研究前提为异常事件样本稀缺且难标注,需仅依赖正常样本训练。主流方法分三类:重建模型通过压缩还原输入,依重建误差辨异常,如 PCA、自编码器等,各有其技术特点与局限;预测模型学习时序规律预判未来帧,借预测误差检测异常,以 ConvLSTM 等为代表;生成模型建模正常数据概率分布,将异常定义为低概率事件,如 VAE、GAN 等。实验显示 ConvLSTM 和 VAE 表现突出,但仍面临类别不平衡等挑战。
2025-07-08 20:26:31
988
原创 Anomaly Detection系列(TNNLS2022 ROADMAP论文解读)
本文提出了一种鲁棒的无监督视频异常检测方法ROADMAP,通过多路径帧预测网络有效捕捉不同尺度的时空特征。该方法采用多路径ConvGRU结构处理多尺度信息,并引入噪声容忍损失降低背景噪声干扰。在CUHKAvenue等数据集上的实验表明,ROADMAP取得了88.3%的帧级AUROC,性能优于现有方法。消融实验验证了多路径结构和噪声容忍损失的有效性,为无监督异常检测提供了新的设计思路。
2025-07-06 16:06:07
810
原创 Anomaly Detection系列(CVPR2022 GCL论文解读)
面向无监督视频异常检测的生成协作学习框架(GCL),利用异常低频特性在生成器与判别器间建立交叉监督,通过交替优化实现无标签学习。生成器重构正常特征并以负学习抑制异常重建,判别器基于伪标签提升分类能力,动态阈值策略适配数据分布。无监督预训练通过时间差分清洗数据,提升模型收敛性。在UCF-Crime和ShanghaiTech数据集上,GCL_PT分别实现71.04%和78.93%的AUC,较基线显著提升,且优于同类无监督及OCC方法。
2025-07-03 20:00:39
971
原创 Anomaly Detection系列(SPL2022 WAGCN论文解读)
本文提出一种弱监督自适应图卷积网络(WAGCN)用于视频异常检测,通过融合特征相似性与时间一致性构建全局图,全面建模视频片段间的时空关系。方法创新点包括:1)提出自适应图学习层动态调整邻接矩阵;2)引入残差连接解决GCN过平滑问题;3)采用k-max损失函数优化弱监督训练。实验表明,该方法在UCF-Crime和ShanghaiTech数据集上分别达到84.67%和96.05%的AUC,显著优于现有方法。WAGCN为视频异常检测提供了新的自适应图学习框架,未来可结合自监督学习进一步提升性能。
2025-07-01 20:34:58
644
原创 Anomaly Detection系列(CVPR2024 TPWNG论文解读)
本文提出了一种基于文本提示和正态性指导的弱监督视频异常检测框架TPWNG,通过迁移CLIP模型的跨模态知识生成伪标签,并引入自适应时间建模机制。该方法设计了可学习文本提示和正态性视觉提示模块提升文本-视频对齐精度,采用伪标签生成模块融合正态性指导信号,并开发时间上下文自适应学习模块动态捕捉事件时序特征。在UCF-Crime和XD-Violence数据集上的实验表明,TPWNG优于现有方法,实现了87.79%和83.68%的性能提升。该研究为弱监督异常检测提供了多模态融合和自适应时序建模的新思路。
2025-06-30 19:41:46
988
原创 Anomaly Detection系列(ICASSP2025 SUVAD论文解读)
本文提出SUVAD方法,一种基于多模态大语言模型(MLLM)的无训练视频异常检测框架。该方法通过MLLM生成视频语义描述,结合大型语言模型进行异常检测,突破了传统视觉特征方法的局限性。SUVAD采用粗粒度到细粒度的分层检测机制,并设计了字幕校正、分数平滑等策略对抗MLLM幻觉问题。实验表明,SUVAD在场景泛化能力上显著优于传统方法,在五个主流数据集上实现了无训练方法的最优性能。该方法支持灵活的异常定义调整,无需重新训练模型,同时提供可解释的检测结果。未来研究将聚焦于复杂动作识别和低质量视频场景下的性能提升
2025-06-28 15:37:51
1453
原创 Anomaly Detection系列(ICML2024 FALCON论文解读)
《FALCON:从粗粒度标签中无监督挖掘细粒度类别》提出了一种创新方法FALCON,能够在仅使用粗标签的情况下同时推断细粒度类别及其与粗类的关系。该方法通过交替优化细粒度分类器和类别关系矩阵,结合局部一致性、置信度激励和熵正则化等技术,有效解决了细粒度标注资源匮乏的难题。实验表明,FALCON在8个数据集上显著优于基线方法,最高提升22%。该方法在医疗诊断、遥感监测、工业质检等领域具有广泛应用前景,其核心创新在于建立了"粗监督-细发现"的双向映射机制。未来可向动态类别估计、跨模态学习和因
2025-06-25 17:10:37
805
原创 Anomaly Detection系列(CSUR2021 综述论文解读)
网络异常检测,作为网络安全领域的核心技术之一,旨在及时发现网络中的异常行为和潜在威胁,以保护网络的正常运行和数据安全。传统的异常检测方法,如防火墙、深度数据包检测系统和入侵检测系统,虽然在一定程度上能够应对已知威胁,但也面临着诸多挑战。随着网络规模的不断扩大、网络结构日益复杂,以及网络攻击手段的不断翻新,传统方法在检测新型攻击和应对网络快速变化方面显得力不从心。机器学习技术的出现为网络异常检测带来了新的曙光,它凭借强大的数据分析和模式识别能力,能够有效应对网络异常检测中的诸多难题。
2025-06-23 19:41:53
785
原创 Anomaly Detection系列(KDD21 Interfusion论文解读)
本文提出InterFusion方法用于多元时间序列(MTS)异常检测与解释。该方法通过层次变分自编码器同时建模度量间依赖和时间依赖,利用两个随机隐变量分别学习低维度量嵌入和时间嵌入。创新性地采用两视图嵌入解决特征融合问题,并通过预过滤策略防止异常数据过拟合。MCMC方法用于重构异常部分的正常模式,实现精准异常解释。实验表明,在多个工业数据集上,InterFusion的F1-Score达到0.94,解释性能IPS为0.87,优于主流方法。该方法在计算效率和复杂场景处理方面表现优异,但需定期重训练以适应业务变化
2025-06-20 16:10:17
635
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人