Yolo_v8的安装测试

前言

    如何安装Python版本的Yolo,有一段时间不用了,Yolo的版本也在不断地发展,所以重新安装了运行了一下,记录了下来,供参考。

一、搭建环境

1.1、创建Pycharm工程

首先创建好一个空白的工程,如下图:

1.2、查看cuda的版本

可以,获知当前电脑安装的cuda版本是12.1。

​​​​​​​1.3、安装cuda版本的Pytorch

先安装mkl

再用已有文件安装cuda版本的Pytorch,如下图:

这个安装当中之所以出现,原有torch版本的卸载问题,是因为工程继承自系统的Python311,已经安装了cpu版本的torch的缘故,这个uninstall后并不影响后续的安装。

我们,可以查看安装后的情况,如下图:

​​​​​​​1.4、一个测试Pytorch的简单程序

说明,cuda版本的Pytorch已经完全可用了。

二、Yolov8的安装

2.1、参考链接

2024最新的YOLOv8安装配置全流程,人人都可以学会的图像识别技术指南-CSDN博客

2.2、安装ultralytics

直接输入:pip install ultralytics

但是,这样做的后果是,安装了最新版本的ultralytics导致torch也要进行更新,于是它就自动这样做了,如下图:

然后,你看,这个torch就已经不支持cuda了,如下图:

不过,这个也不要紧(cpu版本的torch也能用,这不是本文的重点),我们继续:

查看当前的yolo版本,如下图:

三、下载源码开始测试

官网下载源码:https://github.com/ultralytics/ultralytics

如图:

其实,这个版本,已经不是Yolov8,而是Yolov11了。

(是Yolov8还是Yolov11主要决定的是模型文件,而非整体代码,整体代码而言应该是兼容Yolov8和Yolov11的)

先下载下来,然后复制到Pycharm工程中进行测试,如图:

3.1、先做一个预测测试

输入:yolo predict model=yolov8n.pt source='ultralytics/assets/bus.jpg' device=cpu

然后,我们查看这个预测的结果:

显然这个预测是符合我们预测要求的。

3.2、在线coco训练测试

采用在线下载coco包的方式进行测试:

yolo train model = yolov8n.pt data = coco128.yaml epochs = 10 imgsz = 640

训练结束,如下图:

我们可以查看训练的结果:

3.3、离线coco训练测试

将coco128.yaml中的内容进行了修改,删除了其中Download部分,

并将其中的文件和标签的路径修改如下:

并且,将coco集中images和labels复制到对应的位置,如图:

至此,可采用自定义的my_coco128.yaml进行离线训练了,

输入:yolo train model = yolov8n.pt data = my_coco128.yaml epochs = 10 imgsz = 640

运行完毕,如下图:

运行结果是一致的,如下图:

为什么要这样做呢?就是为了后续训练自己打标的图片做准备。

### 安装YOLO框架 对于希望安装YOLO框架的开发者而言,通常有几种方法可以选择。最常见的方式是从官方GitHub仓库获取源码并按照给定说明进行编译和配置[^1]。 #### 方法一:通过Docker容器部署YOLO 使用Docker来设置YOLO环境是一种快速简便的方法,尤其适合那些想要避免复杂依赖关系管理的人群。只需拉取预构建好的镜像即可启动YOLO项目: ```bash docker pull ultralytics/yolov3:latest docker run --rm -it -p 8080:8080 ultralytics/yolov3 ``` 这种方法几乎不需要任何额外配置就能让YOLO运行起来,并且能够轻松切换不同版本之间的差异[^2]。 #### 方法二:本地Python环境中安装YOLO 如果倾向于直接在主机操作系统上操作,则可以通过pip工具安装PyTorch以及YOLO所需的其他库文件。具体步骤如下所示: 1. 创建一个新的虚拟环境(推荐做法) ```bash python3 -m venv yolov4-env source yolov4-env/bin/activate ``` 2. 升级`pip`至最新版本并安装必要的软件包 ```bash pip install --upgrade pip setuptools wheel pip install torch torchvision torchaudio pip install opencv-python matplotlib pyyaml tqdm ``` 3. 下载YOLOv4源代码并进入相应目录执行安装命令 ```bash git clone https://github.com/AlexeyAB/darknet.git cd darknet make ``` 完成上述过程之后,在大多数情况下应该就可以成功搭建好YOLO的工作环境了。当然,实际过程中可能还会遇到一些特定于个人系统的调整需求。 #### 方法三:Anaconda环境下安装YOLO 另一种流行的选择是在Anaconda平台上创建新的Conda环境来进行YOLO开发工作。这种方式特别适用于科研人员或者数据科学家群体,因为Anaconda本身集成了大量科学计算相关的资源和支持。 ```bash conda create -n yolo_env python=3.7 conda activate yolo_env conda install pytorch torchvision cudatoolkit=10.1 -c pytorch git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt ``` 以上三种方式涵盖了从简单到复杂的各种场景下的解决方案,可以根据自身的实际情况选取最适合的一种来进行尝试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青花瓷

您的鼓励是我创作的巨大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值