45、公平性约束的可局部性及其分布式实现

公平性约束的可局部性及其分布式实现

1. 语义约束强度与非阻塞调度器

语义约束存在强度之分。若 $C_1[[IS]] ⊆ C_2[[IS]]$,则称语义约束 $C_1$ 强于 $C_2$(或 $C_2$ 弱于 $C_1$)。若 $C_1$ 是强可行的,且 $C_2$ 弱于 $C_1$,那么 $C_2$ 也是强可行的。

非阻塞调度器 $S$ 满足约束 $C$ 时,不一定对 $C$ “忠实”,即 $C[[IS]]$ 中的每个运行不一定都由 $S$ 生成。而且,非阻塞调度器 $S$ 只是 $C$ 的抽象调度策略,并不直接对应实现。在实际系统中,调度决策由进程 $p$ 做出,$p$ 可以是系统中现有的进程,也可以是辅助调度的协调器。$p$ 做调度决策需通过通信获取进程状态,但通信耗时且进程自主决定就绪时间,所以 $p$ 无法获得与外部观察一致的系统全局视图。例如,$p$ 观察到只有 $x$ 可用并决定调度 $x$ 时,可能有冲突的交互 $y$ 也可用,且语义要求建立 $y$。而非阻塞调度器 $S$ 隐式假设了系统的外部全局视图。

2. 可局部性准则

2.1 相关定义

  • 投影 :设 $IS = (P, I, M)$ 为交互系统,$Q ⊆ P$ 是进程集合,$\phi ∈ run^*(IS) ∪ run(IS)$ 是一个运行。$Q$ 在 $\phi$ 中的投影 $[\phi] Q$ 是从 $\phi$ 中提取涉及 $Q$ 中进程的每个动作 $a$ 以及满足 $b ≺ a$ 的动作 $b$ 的结果,提取动作在 $\phi$ 中的相对顺序在 $[\phi]_Q$ 中保持不变,且 $[\ph
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值